首页> 外文期刊>Expert systems with applications >Application of active learning in DNA microarray data for cancerous gene identification
【24h】

Application of active learning in DNA microarray data for cancerous gene identification

机译:主动学习在DNA微阵列数据中的应用癌基因鉴定

获取原文
获取原文并翻译 | 示例

摘要

Microarray technology has an important role in evaluating gene expression data with unique patterns into existence. In gene-expression based experiments, the expression level of the gene is constantly monitored in order to classify a tissue sample. In microarray technology, the expressions of the genes are altered with respect to pathogenes. The altered expression values can be identified by analyzing the genes of the tissue/cell that are affected along with the tissues/cells that are unaffected are termed as biomarkers. In the current paper, we have developed an Active Learning (AL) model by using Support Vector Machine (SVM) in association with featureselection (FS) algorithm; called Symmetrical Uncertainty (SU) for the prediction of cancer. The effectiveness of the proposed AL and SU combination is manifested and the biomarkers or cancerous genes identified by the proposed method on four gene-expression data sets are reported. In addition, the biological significance tests are performed for the cancer biomarkers obtained from the data sets.
机译:微阵列技术在评估具有独特模式的基因表达数据中具有重要作用。在基于基于基因表达的实验中,持续监测基因的表达水平以分类组织样品。在微阵列技术中,基因的表达相对于病原因改变。可以通过分析与未受影响的组织/细胞随后被称为生物标志物的组织/细胞的组织/细胞的基因来鉴定改变的表达值。在目前的论文中,我们通过使用支持向量机(SVM)与特征相位(FS)算法相关联开发了主动学习(AL)模型;用于预测癌症的对称不确定性(SU)。报道了所提出的Al和Su组合的有效性,并报告了通过在四种基因表达数据集上鉴定的生物标志物或癌变基因鉴定。此外,对从数据集获得的癌症生物标志物进行生物显着性试验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号