首页> 外文期刊>Computational Intelligence >Identification of cancerous gene groups from microarray data by employing adaptive genetic and support vector machine technique
【24h】

Identification of cancerous gene groups from microarray data by employing adaptive genetic and support vector machine technique

机译:利用自适应遗传和支持向量机技术从微阵列数据中鉴定癌基因组

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, microarray gene expression data plays a vital role in tumor classification. However, due to the accessibility of a limited number of tissues compared to large number of genes in genomic data, various existing methods have failed to identify a small subset of discriminative genes. To overcome this limitation, in this paper, we developed a new hybrid technique for gene selection, called ensemble multipopulation adaptive genetic algorithm (EMPAGA) that can overlook the irrelevant genes and classify cancer accurately. The proposed hybrid gene selection algorithm comprises of two phase. In the first phase, an ensemble gene selection (EGS) method used to filter the noisy and redundant genes in high-dimensional datasets by combining multilayer and F-score approaches. Then, an adaptive genetic algorithm based on multipopulation strategy with support vector machine and naive Bayes (NB) classifiers as a fitness function is applied for gene selection to select the extremely sensible genes from the reduced datasets. The performance of the proposed method is estimated on 10 microarray datasets of numerous tumor. The comprehensive results and various comparisons disclose that EGS has a remarkable impact on the efficacy of the adaptive genetic algorithm with multipopulation strategy and enhance the capability of the proposed approach in terms of convergence rate and solution quality. The experiments results demonstrate the superiority of the proposed method when compared to other standard wrappers regarding classification accuracy and optimal number of genes.
机译:如今,微阵列基因表达数据在肿瘤分类中起着至关重要的作用。然而,由于与基因组数据中的大量基因相比,有限数量的组织的可及性,各种现有方法未能鉴定出一小部分可区分的基因。为了克服这一局限性,在本文中,我们开发了一种新的用于基因选择的混合技术,称为集合多种群自适应遗传算法(EMPAGA),该技术可以忽略不相关的基因并准确地对癌症进行分类。提出的杂交基因选择算法包括两个阶段。在第一阶段,采用集成基因选择(EGS)方法,通过结合多层和F评分方法来过滤高维数据集中的嘈杂和冗余基因。然后,将基于支持向量机和朴素贝叶斯(NB)分类器作为适应度函数的基于多种群策略的自适应遗传算法应用于基因选择,以从简化的数据集中选择极其敏感的基因。在许多肿瘤的10个微阵列数据集上估计了该方法的性能。综合结果和各种比较表明,EGS对具有多种群策略的自适应遗传算法的效果产生了显着影响,并且在收敛速度和解决方案质量方面提高了所提出方法的能力。实验结果表明,与其他标准包装纸相比,该方法在分类准确性和最佳基因数量上具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号