首页> 外文期刊>Expert Systems with Application >Neural network modeling of inter-characteristics of silicon nitride film deposited by using a plasma-enhanced chemical vapor deposition
【24h】

Neural network modeling of inter-characteristics of silicon nitride film deposited by using a plasma-enhanced chemical vapor deposition

机译:等离子体增强化学气相沉积法沉积氮化硅膜间特性的神经网络建模

获取原文
获取原文并翻译 | 示例

摘要

Neural network have been widely used to model a relationship between process parameters (or in situ diagnostic variables) and film qualities. A new neural network model relating inter-relationship between the film qualities, not the process parameters is constructed by using a generalized regression neural network and a genetic algorithm. This approach is applied to the lifetime of silicon nitride films deposited by using a plasma-enhanced chemical vapor deposition system. The lifetime is an important quality that determines the efficiency of solar cells. The other film qualities examined are a deposition rate, a refractive index, and a charge density. For a systematic modeling, the deposition process was modeled by using a statistical experiment. Compared to conventional and statistical regression models, the optimized GRNN model demonstrated an improvement of 73% and 81%, respectively. The model predicted important and useful clues to optimizing the lifetime. It is noticeable that higher lifetime was achieved at lower deposition rate. This was also noted as the charge density was decreased. The refractive index played a critical role in improving the lifetime.
机译:神经网络已被广泛用于模拟过程参数(或原位诊断变量)和胶片质量之间的关系。通过使用广义回归神经网络和遗传算法,构建了一种新的神经网络模型,该模型涉及胶片质量之间的相互关系,而不是工艺参数。该方法适用于通过使用等离子体增强化学气相沉积系统沉积的氮化硅膜的寿命。寿命是决定太阳能电池效率的重要素质。检查的其他膜质量是沉积速率,折射率和电荷密度。对于系统建模,通过使用统计实验对沉积过程进行了建模。与常规和统计回归模型相比,优化的GRNN模型分别显示出73%和81%的改进。该模型预测了优化寿命的重要和有用的线索。值得注意的是,在较低的沉积速率下可获得较高的寿命。随着电荷密度的降低,这也被注意到。折射率在延长使用寿命方面起着至关重要的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号