首页> 外文期刊>Expert Systems with Application >Two-level hierarchical combination method for text classification
【24h】

Two-level hierarchical combination method for text classification

机译:文本分类的两级分层组合方法

获取原文
获取原文并翻译 | 示例

摘要

Text classification has been recognized as one of the key techniques in organizing digital data. The intuition that each algorithm has its bias data and build a high performance classifier via some combination of different algorithm is a long motivation. In this paper, we proposed a two-level hierarchical algorithm that systematically combines the strength of support vector machine (SVM) and k nearest neighbor (KNN) techniques based on variable precision rough sets (VPRS) to improve the precision of text classification. First, an extension of regular SVM named variable precision rough SVM (VPRSVM), which partitions the feature space into three kinds of approximation regions, is presented. Second, a modified KNN algorithm named restrictive k nearest neighbor (RKNN) is put forward to reclassify texts in boundary region effectively and efficiently. The proposed algorithm overcomes the drawbacks of sensitive to noises of SVM and low efficiency of KNN. Experimental results compared with traditional algorithms indicate that the proposed method can improve the overall performance significantly.
机译:文本分类已被认为是组织数字数据的关键技术之一。每个算法都有其偏差数据并通过不同算法的某种组合来构建高性能分类器的直觉是一个长期的动机。在本文中,我们提出了一种两级分层算法,该算法基于可变精度粗糙集(VPRS)系统地结合了支持向量机(SVM)和k最近邻(KNN)技术的强度,以提高文本分类的精度。首先,提出了常规SVM的扩展,称为可变精度粗糙SVM(VPRSVM),它将特征空间划分为三种近似区域。其次,提出了一种改进的KNN算法,称为限制性k最近邻(RKNN),以有效地对边界区域中的文本进行重新分类。该算法克服了对支持向量机噪声敏感,KNN效率低的缺点。与传统算法的实验结果表明,该方法可以显着提高整体性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号