首页> 外文期刊>Expert Systems with Application >A multi-layer text classification framework based on two-level representation model
【24h】

A multi-layer text classification framework based on two-level representation model

机译:基于两级表示模型的多层文本分类框架

获取原文
获取原文并翻译 | 示例

摘要

Text categorization is one of the most common themes in data mining and machine learning fields. Unlike structured data, unstructured text data is more difficult to be analyzed because it contains complicated both syntactic and semantic information. In this paper, we propose a two-level representation model (2RM) to represent text data, one is for representing syntactic information and the other is for semantic information. Each document, in syntactic level, is represented as a term vector where the value of each component is the term frequency and inverse document frequency. The Wikipedia concepts related to terms in syntactic level are used to represent document in semantic level. Meanwhile, we designed a multi-layer classification framework (MLCLA) to make use of the semantic and syntactic information represented in 2RM model. The MLCLA framework contains three classifiers. Among them, two classifiers are applied on syntactic level and semantic level in parallel. The outputs of these two classifiers will be combined and input to the third classifier, so that the final results can be obtained. Experimental results on benchmark data sets (20Newsgroups, Reuters-21578 and Classic3) have shown that the proposed 2RM model plus MLCLA framework improves the text classification performance by comparing with the existing fiat text representation models (Term-based VSM, Term Semantic Kernel Model, Concept-based VSM, Concept Semantic Kernel Model and Term + Concept VSM) plus existing classification methods.
机译:文本分类是数据挖掘和机器学习领域中最常见的主题之一。与结构化数据不同,非结构化文本数据更难以分析,因为它包含复杂的句法和语义信息。在本文中,我们提出了一种用于表示文本数据的两级表示模型(2RM),一种用于表示语法信息,另一种用于语义信息。在语法层面上,每个文档都表示为术语向量,其中每个分量的值是术语频率和文档反向频率。与句法层面的术语相关的Wikipedia概念用于表示语义层面的文档。同时,我们设计了一个多层分类框架(MLCLA),以利用2RM模型中表示的语义和句法信息。 MLCLA框架包含三个分类器。其中,两个分类器在句法层面和语义层面并行应用。这两个分类器的输出将被合并并输入到第三个分类器中,从而可以获得最终结果。在基准数据集(20Newsgroups,Reuters-21578和Classic3)上的实验结果表明,与现有的法定文本表示模型(基于术语的VSM,术语语义内核模型,基于概念的VSM,概念语义内核模型和术语+概念VSM)以及现有的分类方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号