首页> 外文期刊>Intelligent data analysis >Adapting non-hierarchical multilabel classification methods for hierarchical multilabel classification
【24h】

Adapting non-hierarchical multilabel classification methods for hierarchical multilabel classification

机译:将非分层多标签分类方法改编为分层多标签分类

获取原文
获取原文并翻译 | 示例

摘要

In most classification problems, a classifier assigns a single class to each instance and the classes form a flat (non-hierarchical) structure, without superclasses or subclasses. In hierarchical multilabel classification problems, the classes are hierarchically structured, with superclasses and subclasses, and instances can be simultaneously assigned to two or more classes at the same hierarchical level. This article proposes two new hierarchical multilabel classification methods based on the well-known local approach for hierarchical classification. The methods are compared with two global methods and one well-known local binary classification method from the literature. The proposed methods presented promising results in experiments performed with bioinformatics datasets.
机译:在大多数分类问题中,分类器为每个实例分配一个单独的类,并且这些类形成一个平面(非分层)结构,而没有超类或子类。在分层的多标签分类问题中,类是具有超级类和子类的分层结构,并且可以在同一分层级别将实例同时分配给两个或多个类。本文提出了两种基于众所周知的局部分类方法的新的多层多标签分类方法。将这些方法与文献中的两种全局方法和一种众所周知的局部二进制分类方法进行了比较。所提出的方法在用生物信息学数据集进行的实验中提出了令人鼓舞的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号