首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Multilabel Classification via Co-Evolutionary Multilabel Hypernetwork
【24h】

Multilabel Classification via Co-Evolutionary Multilabel Hypernetwork

机译:通过协同进化多标签超网络进行多标签分类

获取原文
获取原文并翻译 | 示例

摘要

Multilabel classification is prevalent in many real-world applications where data instances may be associated with multiple labels simultaneously. In multilabel classification, exploiting label correlations is an essential but nontrivial task. Most of the existing multilabel learning algorithms are either ineffective or computationally demanding and less scalable in exploiting label correlations. In this paper, we propose a co-evolutionary multilabel hypernetwork (Co-MLHN) as an attempt to exploit label correlations in an effective and efficient way. To this end, we firstly convert the traditional hypernetwork into a multilabel hypernetwork (MLHN) where label correlations are explicitly represented. We then propose a co-evolutionary learning algorithm to learn an integrated classification model for all labels. The proposed Co-MLHN exploits arbitrary order label correlations and has linear computational complexity with respect to the number of labels. Empirical studies on a broad range of multilabel data sets demonstrate that Co-MLHN achieves competitive results against state-of-the-art multilabel learning algorithms, in terms of both classification performance and scalability with respect to the number of labels.
机译:在许多实际应用中,多标签分类很普遍,在这些应用中,数据实例可能同时与多个标签关联。在多标签分类中,利用标签相关性是一项必不可少的任务。大多数现有的多标签学习算法要么效率低下,要么在计算上要求不高,并且在利用标签相关性方面可扩展性较低。在本文中,我们提出了一种协同进化的多标签超网络(Co-MLHN),以尝试以一种有效和高效的方式利用标签相关性。为此,我们首先将传统的超网络转换为多标签超网络(MLHN),其中标签相关性得到明确表示。然后,我们提出一种协同进化学习算法,以学习所有标签的集成分类模型。提出的Co-MLHN利用任意顺序的标签相关性,并且相对于标签数量具有线性计算复杂性。对广泛的多标签数据集进行的经验研究表明,就标签数量的分类性能和可扩展性而言,Co-MLHN相对于最新的多标签学习算法而言,具有竞争优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号