首页> 中文期刊> 《计算机应用》 >基于标签相关性的K近邻多标签分类方法

基于标签相关性的K近邻多标签分类方法

     

摘要

针对K近邻多标签(ML-KNN)分类算法中未考虑标签相关性的问题,提出了一种基于标签相关性的K近邻多标签分类(CML-KNN)算法.首先,计算出标签集合中每对标签间的条件概率;其次,对于即将被预测的标签,将其与已经预测的标签间的条件概率进行排序,求出最大值;最后,将最大值跟对应标签值相乘同时结合最大化后验概率(MAP)来构造多标签分类模型,对新标签进行预测.实验结果表明,所提算法在Emotions数据集上的分类性能均优于ML-KNN、AdaboostMH、RAkEL、BPMLL这4种算法;在Yeast、Enron数据集上仅在1~2个评价指标上低于ML-KNN与RAkEL算法.由实验分析可知,该算法取得了较好的分类效果.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号