首页> 外文期刊>Expert Systems with Application >A framework for modelling the biomechanical behaviour of the human liver during breathing in real time using machine learning
【24h】

A framework for modelling the biomechanical behaviour of the human liver during breathing in real time using machine learning

机译:使用机器学习实时建模呼吸过程中人类肝脏生物力学行为的框架

获取原文
获取原文并翻译 | 示例

摘要

Progress in biomechanical modelling of human soft tissue is the basis for the development of new clinical applications capable of improving the diagnosis and treatment of some diseases (e.g. cancer), as well as the surgical planning and guidance of some interventions. The finite element method (FEM) is one of the most popular techniques used to predict the deformation of the human soft tissue due to its high accuracy. However, FEM has an associated high computational cost, which makes it difficult its integration in real-time computer-aided surgery systems. An alternative for simulating the mechanical behaviour of human organs in real time comes from the use of machine learning (ML) techniques, which are much faster than FEM. This paper assesses the feasibility of ML methods for modelling the biomechanical behaviour of the human liver during the breathing process, which is crucial for guiding surgeons during interventions where it is critical to track this deformation (e.g. some specific kind of biopsies) or for the accurate application of radiotherapy dose to liver tumours. For this purpose, different ML regression models were investigated, including three tree-based methods (decision trees, random forests and extremely randomised trees) and other two simpler regression techniques (dummy model and linear regression). In order to build and validate the ML models, a labelled data set was constructed from modelling the deformation of eight ex-vivo human livers using FEM. The best prediction performance was obtained using extremely randomised trees, with a mean error of 0.07 mm and all the samples with an error under 1 mm. The achieved results lay the foundation for the future development of some real-time software capable of simulating the human liver deformation during the breathing process during clinical interventions. (C) 2016 Elsevier Ltd. All rights reserved.
机译:人体软组织生物力学建模的进展是开发能够改善某些疾病(例如癌症)的诊断和治疗以及外科手术计划和某些干预措施指导的新临床应用的基础。有限元方法(FEM)由于其准确性高,是用于预测人体软组织变形的最流行技术之一。然而,FEM具有相关的高计算成本,这使其难以集成到实时计算机辅助手术系统中。实时模拟人体器官机械行为的另一种方法是使用机器学习(ML)技术,该技术比FEM快得多。本文评估了ML方法在呼吸过程中对人类肝脏的生物力学行为建模的可行性,这对于在干预过程中指导外科医生至关重要,在干预过程中,必须跟踪这种变形(例如某些特定类型的活组织检查)或准确放疗剂量在肝肿瘤中的应用。为此,研究了不同的ML回归模型,包括三种基于树的方法(决策树,随机森林和极随机树)和其他两种更简单的回归技术(虚拟模型和线性回归)。为了建立和验证ML模型,使用FEM对8个离体人类肝脏的变形进行建模,从而构建了一个标记数据集。使用高度随机的树可获得最佳的预测性能,平均误差为0.07 mm,所有样本的误差均在1 mm以下。获得的结果为将来开发一些能够模拟临床干预过程中呼吸过程中人体肝脏变形的实时软件奠定了基础。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Expert Systems with Application》 |2017年第4期|342-357|共16页
  • 作者单位

    Univ Valencia, Dept Elect Engn, Intelligent Data Anal Lab IDAL, Avda Univ S-N, E-46100 Valencia, Spain;

    Univ Valencia, Dept Elect Engn, Intelligent Data Anal Lab IDAL, Avda Univ S-N, E-46100 Valencia, Spain;

    Univ Politecn Valencia, Dept Ingn Mecan & Mat, Ctr Invest Ingn Mecan CIMM, Camino Vera S-N, E-46022 Valencia, Spain;

    Univ Politecn Valencia, Dept Sistemas Informat & Computat DSIC, Camino Vera S-N, E-46022 Valencia, Spain;

    Univ Valencia, Dept Elect Engn, Intelligent Data Anal Lab IDAL, Avda Univ S-N, E-46100 Valencia, Spain;

    Univ Valencia, Dept Elect Engn, Intelligent Data Anal Lab IDAL, Avda Univ S-N, E-46100 Valencia, Spain;

    Univ Valencia, Dept Elect Engn, Intelligent Data Anal Lab IDAL, Avda Univ S-N, E-46100 Valencia, Spain;

    Univ Politecn Valencia, Dept Ingn Mecan & Mat, Ctr Invest Ingn Mecan CIMM, Camino Vera S-N, E-46022 Valencia, Spain;

    Univ Valencia, Dept Elect Engn, Intelligent Data Anal Lab IDAL, Avda Univ S-N, E-46100 Valencia, Spain;

    Univ Politecn Valencia, Dept Sistemas Informat & Computat DSIC, Camino Vera S-N, E-46022 Valencia, Spain;

    Univ Valencia, Dept Elect Engn, Intelligent Data Anal Lab IDAL, Avda Univ S-N, E-46100 Valencia, Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Soft tissue deformation; Biomechanical behaviour; Liver; Machine learning; Tree-based regression;

    机译:软组织变形;生物力学行为;肝脏;机器学习;基于树的回归;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号