...
首页> 外文期刊>Expert systems with applications >Real-time biomechanical modeling of the liver using Machine Learning models trained on Finite Element Method simulations
【24h】

Real-time biomechanical modeling of the liver using Machine Learning models trained on Finite Element Method simulations

机译:利用机器学习模型肝脏实时生物力学建模,有限元方法模拟

获取原文
获取原文并翻译 | 示例
           

摘要

The development of accurate real-time models of the biomechanical behavior of different organs and tissues still poses a challenge in the field of biomechanical engineering. In the case of the liver, specifically, such a model would constitute a great leap forward in the implementation of complex applications such as surgical simulators, computed-assisted surgery or guided tumor irradiation.In this work, a relatively novel approach for developing such a model is presented. It consists in the use of a machine learning algorithm, which provides real-time inference, trained on tens of thousands of simulations of the biomechanical behavior of the liver carried out by the finite element method on more than 100 different liver geometries.Considering a target accuracy threshold of 3 mm for the Euclidean Error, four different scenarios were modeled and assessed: a single liver with an arbitrary force applied (99.96% of samples within the accepted error range), a single liver with two simultaneous forces applied (99.84% samples in range), a single liver with different material properties and an arbitrary force applied (98.46% samples in range), and a much more general model capable of modeling the behavior of any liver with an arbitrary force applied (99.01% samples in range for the median liver).The results show that the Machine Learning models perform extremely well on all the scenarios, managing to keep the Mean Euclidean Error under 1 mm in all cases. Furthermore, the proposed model achieves working frequencies above 100Hz on modest hardware (with frequencies above 1000Hz being easily achievable on more powerful GPUs) thus fulfilling the real-time requirements. These results constitute a remarkable improvement in this field and may involve a prompt implementation in clinical practice. (C) 2019 Elsevier Ltd. All rights reserved.
机译:不同器官和组织生物力学行为的准确实时模型的发展仍然在生物力学工程领域构成了挑战。在肝脏的情况下,具体而言,这种模型将构成在实施复杂应用的诸如手术模拟器,计算辅助手术或引导肿瘤照射的复杂应用中的大跃进。在这项工作中,一种相对新颖的发展方法模型提出。它在于使用机器学习算法,该算法提供实时推断,培训由有限元方法在100多种不同的肝脏几何形状上进行的肝脏的生物力学行为的数万种模拟。参考目标欧几里德误差3 mm的精度阈值,建模和评估了四种不同的情景:施加任意力的单个肝脏(接受误差范围内的99.96%),施加两个同时力的单一肝脏(99.84%样本在范围内),具有不同材料性质的单个肝脏和施加的任意力(范围内98.46%),以及能够使用施加的任意力(范围内的99.01%样本99.01%样本)建模任何肝脏行为的更大的一般模型。中位肝脏)。结果表明,机器学习模型在所有场景上表现出极良好,管理在所有情况下都能保持1 mm以下的平均欧几里德误差。此外,所提出的模型在适度的硬件上实现高于100Hz的工作频率(在更强大的GPU上容易实现1000Hz以上的频率),从而实现实时要求。这些结果构成了这一领域的显着改进,可能涉及临床实践中的及时实施。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号