首页> 外文期刊>Composites. B, Engineering >A machine learning framework for real-time inverse modeling and multi-objective process optimization of composites for active manufacturing control
【24h】

A machine learning framework for real-time inverse modeling and multi-objective process optimization of composites for active manufacturing control

机译:用于主动制造控制的复合材料的实时逆建模和多目标流程优化的机器学习框架

获取原文
获取原文并翻译 | 示例
           

摘要

For manufacturing of aerospace composites, several parts may be processed simultaneously using convective heating in an autoclave. Due to uncertainties including tool placement, convective Boundary Conditions (BCs) vary in each run. As a result, temperature histories in some of the parts may not conform to process specifications due to under-curing or over-heating. Thermochemical analysis using Finite Element (FE) simulations are typically conducted prior to fabrication based on assumed range of BCs. This, however, introduces unnecessary constraints on the design. To monitor the process, thermocouples (TCs) are placed under tools near critical locations. The TC data may be used to back-calculate BCs using trial-and-error FE analysis. However, since the inverse heat transfer problem is ill-posed, many solutions are obtained for given TC data. In this study, a novel machine learning (ML) framework is presented capable of optimizing air temperature cycle in real-time based on TC data from multiple parts, for active control of manufacturing. The framework consists of two recurrent Neural Networks (NN) for inverse modeling of the ill-posed curing problem at the speed of 300 simulations/second, and a classification NN for multi-objective optimization of the air temperature at the speed of 35,000 simulations/ second. A virtual demonstration of the framework for process optimization of three composite parts with data from three TCs is presented.
机译:为了制造航空航天复合材料,可以在高压釜中使用对流加热同时处理几个部分。由于包括工具放置的不确定性,对流边界条件(BCS)在每次运行中都有所不同。结果,由于固化欠加热或过热,一些部件中的温度历史可能不符合工艺规范。使用有限元(Fe)模拟的热化学分析通常在制造基于假设的BCS范围之前进行。然而,这引入了对设计的不必要的约束。为了监视该过程,热电偶(TCS)放在关键位置附近的工具下。可以使用TC数据使用试验和误差Fe分析来返回BCS。然而,由于逆热传递问题不发挥作用,因此获得了许多解决方案,用于给定TC数据。在本研究中,提出了一种新颖的机器学习(ML)框架,能够基于来自多个部件的TC数据实时优化空气温度周期,以进行主动控制。该框架由两个经常性神经网络(NN)组成,用于以300模拟/秒的速度为不良固化问题的逆建模,以及用于35,000模拟速度的用于多目标优化的分类NN /第二。提出了三个复合部件的流程优化框架的虚拟演示,其中包含三个TCS的数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号