首页> 外文期刊>Engineering Computations >A Chebyshev convex method for mid-frequency analysis of built-up structures with large convex uncertainties
【24h】

A Chebyshev convex method for mid-frequency analysis of built-up structures with large convex uncertainties

机译:一个Chebyshev凸面耦合方法,具有大凸不确定性的内置结构的中频分析

获取原文
获取原文并翻译 | 示例

摘要

PurposeThis paper aims to develop an efficient numerical method for mid-frequency analysis of built-up structures with large convex uncertainties.Design/methodology/approachBased on the Chebyshev polynomial approximation technique, a Chebyshev convex method (CCM) combined with the hybrid finite element/statistical energy analysis (FE-SEA) framework is proposed to fulfil the purpose. In CCM, the Chebyshev polynomials for approximating the response functions of built-up structures are constructed over the uncertain domain by using the marginal intervals of convex parameters; the bounds of the response functions are calculated by applying the convex Monte-Carlo simulation to the approximate functions. A relative improvement method is introduced to evaluate the truncated order of CCM.FindingsCCM has an advantage in accuracy over CPM when the considered order is the same. Furthermore, it is readily to consider the CCM with the higher order terms of the Chebyshev polynomials for handling the larger convex parametric uncertainty, and the truncated order can be effectively evaluated by the relative improvement method.Originality/valueThe proposed CCM combined with FE-SEA is the first endeavor to efficiently handling large convex uncertainty in mid-frequency vibro-acoustic analysis of built-up structures. It also has the potential to serve as a powerful tool for other kinds of system analysis when large convex uncertainty is involved.
机译:目的案件旨在开发具有大凸不确定性的大凸面结构的中频分析的高效分析.Design/methodology / Chebyshev多项式近似技术,Chebyshev凸法(CCM)与混合有限元/相结合/提出统计能量分析(Fe-Sea)框架以满足目的。在CCM中,通过使用凸参数的边际间隔,在不确定的结构域构建用于近似用于近似建筑物结构的响应函数的Chebyshev多项式;通过将凸部Monte-Carlo模拟应用于近似函数来计算响应函数的界限。引入相对改进方法以评估CCM.FindingsCCM的截短顺序在考虑的顺序相同时具有CPM精度的优点。此外,很容易考虑具有用于处理较大凸的参数不确定性的Chebyshev多项式的高阶项的CCM,并且可以通过相对改善方法有效地评估截短的顺序。原始/ valethe提出的CCM与Fe-Sea相结合是第一次努力在建筑结构的中频振动声学分析中有效处理大凸性不确定性。当涉及大凸不确定性时,它还有可能作为其他类型的系统分析的强大工具。

著录项

  • 来源
    《Engineering Computations》 |2020年第9期|3431-3453|共23页
  • 作者单位

    Jilin Univ State Key Lab Automot Simulat & Control Changchun Peoples R China|Hunan Univ State Key Lab Adv Design & Mfg Vehicle Body Changsha Peoples R China|South China Univ Technol Sch Mech & Automot Engn Guangzhou Peoples R China;

    Jilin Univ State Key Lab Automot Simulat & Control Changchun Peoples R China|Hunan Univ State Key Lab Adv Design & Mfg Vehicle Body Changsha Peoples R China|South China Univ Technol Sch Mech & Automot Engn Guangzhou Peoples R China;

    Hunan Univ Dept Mech Engn Changsha Peoples R China;

    Jilin Univ State Key Lab Automot Simulat & Control Changchun Peoples R China|South China Univ Technol Sch Mech & Automot Engn Guangzhou Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Chebyshev polynomials; Built-up structures; Convex parameters; FE-SEA; Mid-frequency analysis;

    机译:Chebyshev多项式;建立结构;凸参数;Fe-Sea;中频分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号