首页> 外文期刊>Engineering Applications of Artificial Intelligence >Design of Mamdani fuzzy logic controllers with rule base minimisation using genetic algorithm
【24h】

Design of Mamdani fuzzy logic controllers with rule base minimisation using genetic algorithm

机译:基于规则最小化的遗传算法Mamdani模糊控制器设计

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a design procedure for Mamdani fuzzy logic controller including rule base minimisation. The rules are modelled with binary weights on which constraints are imposed in order to ensure consistency. A genetic algorithm is used for finding stabilising controllers that minimise the number of rules. The cost function includes a stability/performance coefficient which insures that stable, performance satisfying controllers are given the highest possible fitness. The number of fuzzy sets for the input and the control variables are set by the user and the design procedure is concerned only with the rule base and the distribution of the fuzzy sets in the universes of discourses. Two examples were studied: the control of the pole and cart system and the control of the concentration in CSTR. In both cases, the fuzzy sets were isosceles triangles evenly distributed, in the universe of discourses.
机译:本文提出了包括规则库最小化在内的Mamdani模糊逻辑控制器的设计程序。使用二进制权重对规则建模,对其施加约束以确保一致性。遗传算法用于找到最小化规则数量的稳定控制器。成本函数包括一个稳定性/性能系数,该系数确保稳定,性能令人满意的控制器具有最高的适用性。输入和控制变量的模糊集的数量由用户设置,设计过程仅涉及规则库以及在整个语境中模糊集的分布。研究了两个示例:极点和小车系统的控制以及CSTR中浓度的控制。在这两种情况下,模糊集都是在话语范围内均匀分布的等腰三角形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号