首页> 外文期刊>Engineering Applications of Artificial Intelligence >Neural Network Model-based Automotive Engine Air/fuel Ratio Control And Robustness Evaluation
【24h】

Neural Network Model-based Automotive Engine Air/fuel Ratio Control And Robustness Evaluation

机译:基于神经网络模型的汽车发动机空燃比控制与鲁棒性评估

获取原文
获取原文并翻译 | 示例

摘要

Automotive engines are multivariable system with severe non-linear dynamics, and their modelling and control are challenging tasks for control engineers. Current control of engine used look-up table combined with proportional and integral (PI) control and is not robust to system uncertainty and time varying effects. In this paper the model predictive control strategy is applied to engine air/fuel ratio control using neural network model. The neural network model uses information from multivariables and considers engine dynamics to do multi-step ahead prediction. The model is adapted in on-line mode to cope with system uncertainty and time varying effects. Thus, the control performance is more accurate and robust compared with non-adaptive model based methods. To speed up algorithm calculation, different optimisation algorithms are investigated and performance compared. Finally, the developed method is evaluated on a well-known engine benchmark, a simulated mean value engine model (MVEM). The simulation results demonstrate the effectiveness of the developed method.
机译:汽车发动机是具有严重非线性动力学的多变量系统,其建模和控制对于控制工程师而言是一项艰巨的任务。发动机的当前控制使用了与比例和积分(PI)控制相结合的查找表,并且对系统不确定性和时变影响不可靠。本文将模型预测控制策略应用于基于神经网络模型的发动机空燃比控制。神经网络模型使用来自多变量的信息,并考虑发动机动力学来进行多步提前预测。该模型适用于在线模式,以应对系统不确定性和时变效应。因此,与基于非自适应模型的方法相比,控制性能更加准确和鲁棒。为了加快算法的计算,研究了不同的优化算法并比较了性能。最后,在众所周知的引擎基准(模拟均值引擎模型(MVEM))上评估了开发的方法。仿真结果证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号