首页> 外文期刊>Journal of the Franklin Institute >Predictive control of air-fuel ratio in aircraft engine on fuel-powered unmanned aerial vehicle using fuzzy-RBF neural network
【24h】

Predictive control of air-fuel ratio in aircraft engine on fuel-powered unmanned aerial vehicle using fuzzy-RBF neural network

机译:采用模糊RBF神经网络预测燃料无人空中航空飞机发动机空燃比的预测控制

获取原文
获取原文并翻译 | 示例

摘要

Air-fuel ratio control is important for optimizing the performance and reducing the exhaust emission of fuel-powered unmanned aerial vehicles 0(UAVs). However, previous studies on engine air-fuel ratio control neglect the fuel injection process and load of UAV propellers, and traditional methods could not satisfy the control requirement of an air-fuel ratio error of less than +/- 2% when a UAV operates in different conditions. Here, to optimize the control performance, the mean value model of a fuel-powered aircraft engine is improved and an adaptive fuzzy radial basis function (RBF) neural network is used to perform predictive control. The simulation results are compared with the traditional control and some previous studies, and engine control experiments are implemented for demonstration. The simulation and experimental results indicate that, through predictive control using a fuzzy-RBF neural network, the air-fuel ratio of the aircraft engine can be controlled within +1% bounds of the stoichiometric value (14.7), and the highest error can be reduced by 68 to 75% compared with that in the previous work and the traditional neural network model, traditional PID method, and second-order sliding mode strategy. This research can be considered as a reference for intelligent algorithm applications on the power system of fuel-powered UAVs. (C) 2020 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
机译:空燃比控制对于优化性能和减少燃料供电无人驾驶飞行器0(无人机)的废气排放是重要的。然而,以前关于发动机空燃比控制忽略了无人机螺旋桨的燃油喷射过程和负载的研究,并且当无人机操作时,传统方法无法满足空气燃料比误差小于+/- 2%的控制要求在不同的条件下。这里,为了优化控制性能,提高了燃料供电的飞机发动机的平均值模型,并且使用自适应模糊径向基函数(RBF)神经网络来执行预测控制。将仿真结果与传统的控制和一些先前的研究进行了比较,并实施发动机控制实验以进行示范。模拟和实验结果表明,通过使用模糊RBF神经网络的预测控制,飞机发动机的空燃比可以控制在化学计量值(14.7)的+ 1%范围内,最高误差与前一项工作和传统的神经网络模型,传统的PID方法和二阶滑动模式策略相比,减少了68%至75%。该研究可以被认为是燃料供电无人机电力系统上智能算法应用的参考。 (c)2020富兰克林学院。 elsevier有限公司出版。保留所有权利。

著录项

  • 来源
    《Journal of the Franklin Institute》 |2020年第13期|8342-8363|共22页
  • 作者单位

    Beihang Univ Sch Automat Sci & Elect Engn Beijing 100191 Peoples R China;

    Beihang Univ Sch Automat Sci & Elect Engn Beijing 100191 Peoples R China;

    Beihang Univ Sch Automat Sci & Elect Engn Beijing 100191 Peoples R China;

    Beihang Univ Sch Automat Sci & Elect Engn Beijing 100191 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号