首页> 外文期刊>Engineering Applications of Artificial Intelligence >A self-learning disturbance observer for nonlinear systems in feedback-error learning scheme
【24h】

A self-learning disturbance observer for nonlinear systems in feedback-error learning scheme

机译:反馈误差学习方案中非线性系统的自学习扰动观测器

获取原文
获取原文并翻译 | 示例

摘要

This paper represents a novel online self-learning disturbance observer (SLDO) by benefiting from the combination of a type-2 neuro-fuzzy structure (T2NFS), feedback-error learning scheme and sliding mode control (SMC) theory. The SLDO is developed within a framework of feedback-error learning scheme in which a conventional estimation law and a T2NFS work in parallel. In this scheme, the latter learns uncertainties and becomes the leading estimator whereas the former provides the learning error to the T2NFS for learning system dynamics. A learning algorithm established on SMC theory is derived for an interval type-2 fuzzy logic system. In addition to the stability of the learning algorithm, the stability of the SLDO and the stability of the overall system are proven in the presence of time-varying disturbances. Thanks to learning process by the T2NFS, the simulation results show that the SLDO is able to estimate time-varying disturbances precisely as distinct from the basic nonlinear disturbance observer (BNDO) so that the controller based on the SLDO ensures robust control performance for systems with time-varying uncertainties, and maintains nominal performance in the absence of uncertainties.
机译:本文结合了2型神经模糊结构(T2NFS),反馈错误学习方案和滑模控制(SMC)理论,提出了一种新颖的在线自学习干扰观察器(SLDO)。 SLDO是在反馈错误学习方案的框架内开发的,在该方案中,常规估计定律和T2NFS并行工作。在这种方案中,后者学习不确定性并成为主要的估计器,而前者则为T2NFS提供学习误差,以了解系统动态。推导了一种基于SMC理论的区间2型模糊逻辑系统学习算法。除了学习算法的稳定性外,在存在时变干扰的情况下,还证明了SLDO的稳定性和整个系统的稳定性。通过T2NFS的学习过程,仿真结果表明SLDO能够准确估计时变干扰,这与基本的非线性干扰观测器(BNDO)完全不同,因此基于SLDO的控制器可确保具有以下特性的系统的鲁棒控制性能:随时间变化的不确定性,并在没有不确定性的情况下保持名义性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号