首页> 外文学位 >Robust fault diagnosis and compensation in nonlinear systems via sliding mode and iterative learning observers.
【24h】

Robust fault diagnosis and compensation in nonlinear systems via sliding mode and iterative learning observers.

机译:通过滑模和迭代学习观测器对非线性系统进行鲁棒的故障诊断和补偿。

获取原文
获取原文并翻译 | 示例

摘要

This thesis deals with issues of robust Fault Detection and Isolation (FDI) and compensation in uncertain nonlinear systems using second order sliding mode and iterative learning observers.; The problem of detecting and diagnosing actuator faults using a variable structure adaptive observer (VSAO) is first discussed. The VSAO is constructed directly based on the uncertain nonlinear system itself. The VSAO-based FDI can achieve robust fault detection and estimation. Furthermore, a second order sliding mode observer (SOSMO)-based robust fault detection in uncertain nonlinear systems is addressed. The SOSMO has the property of sharply filtering unwanted high frequency signals due to unmodelled dynamics, as the sliding surface dynamics forms a low-pass filter. The SOSMO is then extended to an uncertain constrained nonlinear system (UCNS) for fault detection and estimation, where the SOSMO can directly supply fault estimation. This makes fault isolation become easier.; An Iterative Learning Observer (ILO), which is updated online by immediate past system output errors as well as inputs, is constructed for the purpose of fault diagnosis. An automatic control reconfiguration scheme for fault accommodation using iterative learning strategy is then suggested. It is shown that the effects of disturbances can be attenuated by ILO inputs. The ILO is applied to excite an adaptive law in order to generate an additions control input to the nonlinear system. The additional control input can annihilate the effect of faults on system dynamics. ILO-based adaptive fault compensation strategy is independent from any existing strategies. It can supply fault detection, estimation, and compensation at the same time, and does not need a fault detection and isolation subsystem.; The last chapter is concerned with the design of a sliding mode observer (SMO) for a class of uncertain nonlinear differential-algebraic systems (DAS). An algorithm is developed to reconstruct the algebraic variables with a singular distribution matrix. An SMO is then designed based on the reconstructed algebraic variables to compensate the effect of disturbances on estimation error dynamics such that the estimated states including both the differential and algebraic variables can track the actual ones.
机译:本文研究了使用二阶滑模和迭代学习观测器的不确定非线性系统的鲁棒故障检测与隔离(FDI)和补偿问题。首先讨论了使用可变结构自适应观测器(VSAO)检测和诊断执行器故障的问题。 VSAO是基于不确定的非线性系统本身直接构建的。基于VSAO的FDI可以实现可靠的故障检测和估计。此外,解决了不确定非线性系统中基于二阶滑模观测器(SOSMO)的鲁棒故障检测。 SOSMO具有由于未建模的动力学而对不需要的高频信号进行急剧滤波的特性,因为滑动表面动力学形成了低通滤波器。然后,将SOSMO扩展到不确定的约束非线性系统(UCNS),以进行故障检测和估计,其中SOSMO可以直接提供故障估计。这使得故障隔离变得更加容易。为了故障诊断的目的,构造了一个迭代学习观察器(ILO),该迭代学习观察器(ILO)通过即时的过去系统输出错误和输入进行在线更新。然后提出了使用迭代学习策略的故障适应自动控制重配置方案。结果表明,干扰的影响可以通过ILO输入来衰减。应用ILO来激发自适应律,以便为非线性系统生成附加控制输入。附加的控制输入可以消除故障对系统动力学的影响。基于ILO的自适应故障补偿策略独立于任何现有策略。它可以同时提供故障检测,估计和补偿,并且不需要故障检测和隔离子系统。最后一章涉及一类不确定非线性微分代数系统(DAS)的滑模观测器(SMO)的设计。开发了一种用奇异分布矩阵重建代数变量的算法。然后,基于重构的代数变量来设计SMO,以补偿干扰对估计误差动态的影响,以使包括微分和代数变量的估计状态都可以跟踪实际状态。

著录项

  • 作者

    Chen, Wen.;

  • 作者单位

    Simon Fraser University (Canada).;

  • 授予单位 Simon Fraser University (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 206 p.
  • 总页数 206
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:43:28

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号