首页> 外文学位 >Robust fault diagnosis in linear and nonlinear systems based on unknown input, and sliding mode functional observer methodologies.
【24h】

Robust fault diagnosis in linear and nonlinear systems based on unknown input, and sliding mode functional observer methodologies.

机译:基于未知输入和滑模功能观测器方法的线性和非线性系统中的鲁棒故障诊断。

获取原文
获取原文并翻译 | 示例

摘要

The field of observer based fault diagnosis for complex control systems has become an important topic of research in the control community over the last three decades. Recently, special attention has been paid to the problem of robust fault diagnosis for linear and nonlinear uncertain systems. Many proposed fault diagnosis approaches are based on robust state observer techniques, which can provide the right estimation of system states under the existence of a large class of model uncertainties and disturbances, known as unknown inputs. It is noted that robust state estimation requires strong restrictive existence conditions, which confines its practical application. On the other hand, it is unnecessary to estimate all states for the objective of fault diagnosis. This thesis is an attempt to accomplish robust fault diagnosis under weaker existence conditions through the development of the unknown input and sliding mode functional observer theory. The proposed functional observers can estimate a function of system states by decoupling the effect of the unknown inputs.; The necessary and sufficient conditions for the existence of unknown input functional observer (UIFO) for linear systems are obtained with the aid of Loop Transfer Recovery (LTR) technique. A constructive design procedure is given. The problem of estimating the unknown input is also addressed. Two kinds of reduced-order unknown input estimators using only measured outputs are presented. They extend full-order input estimators design in the existing literature and have advantage of working for certain class of non minimum phase systems.; Under a UIFO framework, the unknown input decoupled residual generator is developed, and the remaining freedom for fault diagnosis observer design, after unknown input decoupling, is completely revealed. A fault diagnosis algorithm is proposed, which combines unknown input decoupling theory and the Beard-Jones detection filter, or input estimator. This algorithm offers maximum residual dimension and is therefore more applicable than existing robust fault diagnosis schemes which are based on unknown input observer. Representation of a sensor fault, as a mathematical equivalent of an actuator fault, is further developed. The structured properties of the augmented system for sensor fault detection are provided.; The results for linear systems are extended to bilinear systems with unknown inputs. For bilinear systems, a robust fault diagnosis observer with linear estimation error dynamic can be derived under special structured conditions. A robust fault diagnosis observer with bilinear estimation error dynamic which improves the fault isolation capability of the system is proposed under less conservative conditions. For a class of bilinear systems with bounded control inputs, the existence conditions for a robust fault diagnosis observer are relaxed further.; A robust functional observer design, using the sliding mode principle, is studied in depth for linear systems and for a class of nonlinear systems, which are subject to bounded unknown inputs. The connections between the unknown input observer and the sliding mode observer methodology are investigated. It is shown that a sliding mode functional observer (SMFO) can be designed under weaker conditions than those for UIFO. Finally, the potential advantages and disadvantages of fault diagnosis using, SMFO are discussed extensively.; Numerical examples are presented throughout the thesis to illustrate the applicability of the proposed estimation and fault diagnosis methods. Many of these cannot be handled by the existing methods in the literature.
机译:在过去的三十年中,基于观察者的复杂控制系统故障诊断领域已成为控制界研究的重要课题。近来,已经特别关注线性和非线性不确定系统的鲁棒故障诊断问题。许多提出的故障诊断方法都是基于鲁棒状态观测器技术的,该技术可以在存在大量模型不确定性和干扰(称为未知输入)的情况下提供对系统状态的正确估计。需要注意的是,鲁棒状态估计需要强大的限制性存在条件,这限制了其实际应用。另一方面,出于故障诊断的目的,不必估计所有状态。本文是通过发展未知输入和滑模功能观测者理论,在弱环境下完成鲁棒故障诊断的尝试。提出的功能观察者可以通过解耦未知输入的影响来估计系统状态的函数。借助循环转移恢复(LTR)技术,可以获得线性系统未知输入功能观察者(UIFO)存在的必要和充分条件。给出了建设性的设计程序。还解决了估计未知输入的问题。提出了仅使用测量输出的两种降阶未知输入估计量。它们扩展了现有文献中的全阶输入估计器设计,并具有为某些非最小相位系统工作的优势。在UIFO框架下,开发了未知输入解耦残差生成器,并在未知输入解耦之后完全揭示了故障诊断观察器设计的剩余自由度。提出了一种故障诊断算法,该算法结合了未知输入解耦理论和Beard-Jones检测滤波器或输入估计器。与现有的基于未知输入观测器的鲁棒故障诊断方案相比,该算法可提供最大的残差维,因此更具适用性。进一步发展了传感器故障的表示形式,将其等同于执行器故障。提供了用于传感器故障检测的增强系统的结构化特性。线性系统的结果扩展到输入未知的双线性系统。对于双线性系统,可以在特殊结构化条件下导出具有线性估计误差动态的鲁棒故障诊断观察器。提出了一种在不那么保守的条件下,具有双线性估计误差动态特性的鲁棒故障诊断观测器,该观测器提高了系统的故障隔离能力。对于一类具有有限控制输入的双线性系统,鲁棒故障诊断观测器的存在条件得到进一步放松。使用滑模原理对鲁棒的功能性观察器设计进行了深入研究,研究线性系统和一类非线性系统,这些系统受到有界未知输入的约束。研究了未知输入观察者与滑模观察者方法之间的联系。结果表明,可以在比UIFO弱的条件下设计滑模功能观察器(SMFO)。最后,广泛讨论了使用SMFO进行故障诊断的潜在优缺点。全文通过数值算例说明了所提出的估计和故障诊断方法的适用性。其中许多方法无法通过文献中的现有方法来处理。

著录项

  • 作者

    Xiong, Yi.;

  • 作者单位

    Simon Fraser University (Canada).;

  • 授予单位 Simon Fraser University (Canada).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:46:55

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号