首页> 外文期刊>Emerging and Selected Topics in Circuits and Systems, IEEE Journal on >Hierarchical Memory System With STT-MRAM and SRAM to Support Transfer and Real-Time Reinforcement Learning in Autonomous Drones
【24h】

Hierarchical Memory System With STT-MRAM and SRAM to Support Transfer and Real-Time Reinforcement Learning in Autonomous Drones

机译:带有STT-MRAM和SRAM的分层存储系统,可支持自主无人机的传输和实时强化学习

获取原文
获取原文并翻译 | 示例

摘要

This article presents a transfer learning (TL) followed by reinforcement learning (RL) algorithm mapped onto a hierarchical embedded memory system to meet the stringent power budgets of autonomous drones. The power reduction is achieved by 1. TL on meta-environments followed by online RL only on the last few layers of a deep convolutional neural network (CNN) instead of end-to-end (E2E) RL and 2. Mapping of the algorithm onto a memory hierarchy where the pre-trained weights of all the conv layers and the first few fully connected (FC) layers are stored in dense, low standby leakage Spin Transfer Torque (STT) RAM eNVM arrays and the weights of the last few FC layers are stored in the on-die SRAM. This memory hierarchy enables real-time RL as the drone explores unknown territories and the system only reads the weights from eNVM (that are slow and power hungry to write otherwise) for inference and uses the on-die SRAM for low latency training through both write and read of the weights of the last few layers. The proposed system is extensively simulated on a virtual environment and dissipates 83.5% lower energy per image frame as well as 79.4% lower latency as compared to E2E RL without any loss of accuracy. The speed of the drone is improved by a factor of 3x due to higher frame rates as well.
机译:本文介绍了一种转移学习(TL),然后是强化学习(RL)算法,该算法映射到分层的嵌入式存储系统上,以满足自主无人机的严格功率预算。通过以下方法实现功率降低:1.在元环境上执行TL,然后仅在深层卷积神经网络(CNN)的最后几层而不是端到端(E2E)RL进行在线RL,然后执行2.映射算法到存储层次结构中,其中所有conv层和前几个完全连接(FC)层的预训练权重存储在密集的低待机泄漏自旋传递扭矩(STT)RAM eNVM阵列中,最后几个FC的权重层存储在片上SRAM中。当无人机探索未知区域时,该内存层次结构实现了实时RL,并且系统仅从eNVM读取权重(这些速度很慢,否则需要耗电)以进行推理,并通过两次写入使用片上SRAM进行低延迟训练并读取最后几层的权重。所提出的系统在虚拟环境中进行了广泛的仿真,与E2E RL相比,每帧图像的能耗降低了83.5%,延迟降低了79.4%,而没有任何准确性的损失。由于更高的帧频,无人机的速度也提高了3倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号