首页> 外文期刊>Integration >Hierarchical power management of a system with autonomously power-managed components using reinforcement learning
【24h】

Hierarchical power management of a system with autonomously power-managed components using reinforcement learning

机译:使用强化学习的具有自主电源管理组件的系统的分层电源管理

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a hierarchical dynamic power management (DPM) framework based on reinforcement learning (RL) technique, which aims at power savings in a computer system with multiple I/O devices running a number of heterogeneous applications. The proposed framework interacts with the CPU scheduler to perform effective application-level scheduling, thereby enabling further power savings. Moreover, it considers non-stationary workloads and differentiates between the service request generation rates of various software application. The online adaptive DPM technique consists of two layers: component-level local power manager and system-level global power manager. The component-level PM policy is pre-specified and fixed whereas the system-level PM employs temporal difference learning on semi-Markov decision process as the model-free RL technique, and it is specifically optimized for a heterogeneous application pool. Experiments show that the proposed approach considerably enhances power savings while maintaining good performance levels. In comparison with other reference systems, the proposed RL-based DPM approach, further enhances power savings, performs well under various workloads, can simultaneously consider power and performance, and achieves wide and deep power-performance tradeoff curves. Experiments conducted with multiple service providers confirm that up to 63% maximum energy saving per service provider can be achieved.
机译:本文提出了一种基于强化学习(RL)技术的分层动态电源管理(DPM)框架,该框架旨在节省具有多个运行多个异构应用程序的I / O设备的计算机系统的功耗。所提出的框架与CPU调度程序交互以执行有效的应用程序级调度,从而实现进一步的节能。此外,它考虑了非固定工作量,并区分了各种软件应用程序的服务请求生成率。在线自适应DPM技术由两层组成:组件级本地电源管理器和系统级全局电源管理器。组件级的PM策略是预先指定和固定的,而系统级的PM采用半马尔可夫决策过程的时间差异学习作为无模型的RL技术,并且专门针对异构应用程序池进行了优化。实验表明,所提出的方法可在保持良好性能水平的同时大大提高功耗。与其他参考系统相比,建议的基于RL的DPM方法可进一步提高功率节省,在各种工作负载下表现出色,可以同时考虑功率和性能,并获得宽而深的功率性能折衷曲线。与多个服务提供商进行的实验证实,每个服务提供商最多可以节省63%的最大能源。

著录项

  • 来源
    《Integration》 |2015年第1期|10-20|共11页
  • 作者单位

    Carthage University, MMA Laboratory, Institut National des Sciences Appliquees et de Technologie, Centre Urbain Nord, B.P. 676, Tunis, Cedex 1080, Tunisia;

    Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA;

    Carthage University, MMA Laboratory, Institut National des Sciences Appliquees et de Technologie, Centre Urbain Nord, B.P. 676, Tunis, Cedex 1080, Tunisia,Department of Electrical & Computer Engineering, Faculty of Engineering, King Abdulaziz University, P.O. Box 21589, Jeddah 21589, Saudi Arabia;

    Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Power management; Reinforcement learning; Temporal difference learning; Semi-Markov decision process;

    机译:能源管理;强化学习;时间差异学习;半马尔可夫决策过程;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号