首页> 外文学位 >Improving Phase Change Memory (PCM) and Spin-Torque-Transfer Magnetic-RAM (STT-MRAM) as next-generation memories: A circuit perspective.
【24h】

Improving Phase Change Memory (PCM) and Spin-Torque-Transfer Magnetic-RAM (STT-MRAM) as next-generation memories: A circuit perspective.

机译:改进相变存储器(PCM)和自旋扭矩传递磁性RAM(STT-MRAM)作为下一代存储器:电路角度。

获取原文
获取原文并翻译 | 示例

摘要

In the memory hierarchy of computer systems, the traditional semiconductor memories Static RAM (SRAM) and Dynamic RAM (DRAM) have already served for several decades as cache and main memory. With technology scaling, they face increasingly intractable challenges like power, density, reliability and scalability. As a result, they become less appealing in the multi/many-core era with ever increasing size and memory-intensity of working sets.;Recently, there is an increasing interest in using emerging non-volatile memory technologies in replacement of SRAM and DRAM, due to their advantages like non-volatility, high device density, near-zero cell leakage and resilience to soft errors. Among several new memory technologies, Phase Change Memory (PCM) and Spin-Torque-Transfer Magnetic-RAM (STT-MRAM) are most promising candidates in building main memory and cache, respectively. However, both of them possess unique limitations that preventing them from being effectively adopted.;In this dissertation, I present my circuit design work on tackling the limitations of PCM and STT-MRAM. At bit level, both PCM and STT-MRAM suffer from excessive write energy, and PCM has very limited write endurance. For PCM, I implement Differential Write to remove large number of unnecessary bit-writes that do not alter the stored data. It is then extended to STT-MRAM as Early Write Termination, with specific optimizations to eliminate the overhead of pre-write read. At array level, PCM enjoys high density but could not provide competitive throughput due to its long write latency and limited number of read/write circuits. I propose a Pseudo-Multi-Port Bank design to exploit intrabank parallelism by recycling and reusing shared peripheral circuits between accesses in a time-multiplexed manner. On the other hand, although STT-MRAM features satisfactory throughput, its conventional array architecture is constrained on density and scalability by the pitch of the per-column bitline pair. I propose a Common-Source-Line Array architecture which uses a shared source-line along the row, essentially leaving only one bitline per column.;For these techniques, I provide circuit level analyses as well as architecture/system level and/or process/device level discussions. In addition, relevant background and work are thoroughly surveyed and potential future research topics are discussed, offering insights and prospects of these next-generation memories.
机译:在计算机系统的存储器层次结构中,传统的半导体存储器静态RAM(SRAM)和动态RAM(DRAM)已经作为缓存和主存储器使用了数十年。随着技术的扩展,它们面临着越来越棘手的挑战,例如功率,密度,可靠性和可扩展性。结果,随着工作集的大小和存储强度的不断提高,它们在多核/多核时代的吸引力越来越小。;最近,人们越来越有兴趣使用新兴的非易失性存储技术来替代SRAM和DRAM。 ,因为它们具有诸如非易失性,高设备密度,接近零的电池泄漏以及对软错误的适应性等优点。在几种新的存储技术中,相变存储器(PCM)和自旋扭矩传递磁性RAM(STT-MRAM)分别是构建主存储器和缓存的最有前途的候选技术。然而,它们都具有独特的局限性,使它们无法有效地被采用。在本论文中,我将介绍我的电路设计工作,以解决PCM和STT-MRAM的局限性。在位级别上,PCM和STT-MRAM都遭受过多的写入能量,而PCM具有非常有限的写入耐久性。对于PCM,我实现了差异写入功能,以消除不会改变存储数据的大量不必要的位写入。然后将其扩展到STT-MRAM作为早期写入终止,并进行特定的优化以消除预写入读取的开销。在阵列级别,PCM具有高密度,但由于其较长的写延迟和有限的读/写电路数量而无法提供有竞争力的吞吐量。我提出了一种伪多端口银行设计,通过以时分复用的方式回收和重用访问之间的共享外围电路来利用银行内部并行性。另一方面,尽管STT-MRAM具有令人满意的吞吐量,但其常规阵列架构在密度和可伸缩性上受到每列位线对间距的限制。我提出了一种公共源线阵列结构,该结构沿行使用一条共享的源线,实际上每列只保留一条位线;对于这些技术,我提供了电路级分析以及体系结构/系统级和/或过程/设备级别的讨论。此外,还将对相关背景和工作进行全面调查,并讨论潜在的未来研究主题,从而为这些下一代存储器提供见识和前景。

著录项

  • 作者

    Zhao, Bo.;

  • 作者单位

    University of Pittsburgh.;

  • 授予单位 University of Pittsburgh.;
  • 学科 Engineering Computer.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:39

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号