首页> 外文期刊>IEEE Transactions on Electron Devices >Gate engineering for deep-submicron CMOS transistors
【24h】

Gate engineering for deep-submicron CMOS transistors

机译:深亚微米CMOS晶体管的栅极工程

获取原文
获取原文并翻译 | 示例

摘要

Gate depletion and boron penetration through thin gate oxide place directly opposing requirements on the gate engineering for advanced MOSFET's. In this paper, several important issues of deep-submicron CMOS transistor gate engineering are discussed. First, the impact of gate nitrogen implantation on the performance and reliability of deep-submicron CMOSFET's is investigated. The suppression of boron penetration is confirmed by the SIMS profiles, and is attributed mainly to the diffusion retardation effect in bulk polysilicon by the presence of nitrogen. The MOSFET' I-V characteristics, MOS capacitor quasi-static C-V curves, SIMS profiles, gate sheet resistance, and oxide Q/sub bd/ are compared for different nitrogen implant conditions. A nitrogen dose of 5/spl times/10/sup 15/ cm/sup -2/ is found to be the optimum choice at an implant energy of 40 keV in terms of the overall electrical behavior of CMOSFET's. Under optimum design, gate nitrogen implantation is found to be effective in eliminating boron penetration without degrading performance of either p/sup +/ gate p-MOSFET and n/sup +/ gate n-MOSFET. Secondly, the impact of gate microstructure on the performance of deep-submicron CMOSFET's is discussed by comparing poly and amorphous silicon gate deposition technologies. Thirdly, poly-Si/sub 1-x/Ge/sub x/ is presented as a superior alternative gate material. Higher dopant activation efficiently results in higher active-dopant concentration near the gate/SiO/sub 2/ interface without increasing the gross dopant concentration. This plus the lower annealing temperature suppress the dopant penetration. Phosphorus-implanted poly-Si/sub 1-x/Ge/sub x/ is gate is compared with polysilicon gate in this study.
机译:栅极耗尽和硼通过薄栅极氧化物的渗透直接对高级MOSFET的栅极工程提出了相反的要求。本文讨论了深亚微米CMOS晶体管栅极工程的几个重要问题。首先,研究了栅极氮注入对深亚微米CMOSFET的性能和可靠性的影响。通过SIMS曲线证实了对硼渗透的抑制,这主要归因于氮的存在在本体多晶硅中的扩散延迟效应。比较了不同氮注入条件下MOSFET的I-V特性,MOS电容器准静态C-V曲线,SIMS曲线,栅极薄层电阻和氧化物Q / sub bd /。就CMOSFET的整体电性能而言,在注入能量为40 keV时,发现5 / spl乘以/ 10 / sup 15 / cm / sup -2 /的氮气剂量是最佳选择。在最佳设计下,发现栅极氮注入可有效消除硼渗透,而不会降低p / sup + /栅极p-MOSFET和n / sup + /栅极n-MOSFET的性能。其次,通过比较多晶硅和非晶硅栅极沉积技术,讨论了栅极微结构对深亚微米CMOSFET性能的影响。第三,提出了多晶硅/ sub 1-x / Ge / sub x /作为优良的替代栅极材料。较高的掺杂剂活化有效地导致栅极/ SiO / sub 2 /界面附近的较高的活性掺杂剂浓度,而不增加总的掺杂剂浓度。这加上较低的退火温度抑制了掺杂剂的渗透。在本研究中,将磷注入的多晶硅/ sub 1-x / Ge / sub x /与多晶硅栅进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号