首页> 外文期刊>IEEE Transactions on Electron Devices >The performance and reliability of PMOSFET's with ultrathin silicon nitride/oxide stacked gate dielectrics with nitrided Si-SiO/sub 2/ interfaces prepared by remote plasma enhanced CVD and post-deposition rapid thermal annealing
【24h】

The performance and reliability of PMOSFET's with ultrathin silicon nitride/oxide stacked gate dielectrics with nitrided Si-SiO/sub 2/ interfaces prepared by remote plasma enhanced CVD and post-deposition rapid thermal annealing

机译:通过远程等离子体增强CVD和沉积后快速热退火制备的具有氮化的Si-SiO / sub 2 /界面的超薄氮化硅/氧化物堆叠栅极电介质的PMOSFET的性能和可靠性

获取原文
获取原文并翻译 | 示例

摘要

Ultrathin (/spl sim/1.9 nm) nitride/oxide (N/O) dual layer gate dielectrics have been prepared by the remote plasma enhanced chemical vapor deposition (RPECVD) of Si/sub 3/N/sub 4/ onto oxides. Compared to PMOSFET's with heavily doped p/sup +/-poly-Si gates and oxide dielectrics, devices incorporating the RPECVD stacked nitrides display reduced tunneling current, effectively no boron penetration and improved interface characteristics. By preventing boron penetration into the bulk oxide and channel region, gate dielectric reliability and short channel effects are significantly improved. The hole mobility in devices with N/O dielectrics with equivalent oxide thickness between 1.8 nm and 3.0 nm is not significantly degraded. Because nitrogen is transported to the substrate/dielectric interface during post-deposition annealing, degradation of mobility during hot carrier stressing is significantly reduced for N/O devices. Compared with oxide, the tunneling current for N/O films with /spl sim/1.9 nm equivalent oxide thickness is lower by about an order of magnitude due to the larger physical thickness. Suppression of boron transport in nitride layers is explained by a percolation model in which boron transport is blocked in sufficiently thick nitrides, and is proportional to the oxide fraction in oxynitride alloys.
机译:通过在Si / sub 3 / N / sub 4 /上进行远程等离子增强化学气相沉积(RPECVD),已经制备了超薄(/ spl sim / 1.9 nm)氮化物/氧化物(N / O)双层栅极电介质。与具有重掺杂的p / sup +/-多晶硅栅极和氧化物电介质的PMOSFET相比,采用RPECVD堆叠氮化物的器件显示出降低的隧穿电流,有效的无硼渗透和改善的界面特性。通过防止硼渗入体氧化物和沟道区,可以显着改善栅极介电可靠性和短沟道效应。具有等效氧化物厚度在1.8 nm和3.0 nm之间的N / O电介质的器件中的空穴迁移率不会显着降低。因为在沉积后退火过程中氮被运输到衬底/电介质界面,所以对于N / O器件,热载流子应力期间迁移率的降低显着减少。与氧化物相比,等效氧化物厚度为/ spl sim / 1.9 nm的N / O薄膜的隧穿电流由于物理厚度较大而降低了大约一个数量级。用渗流模型解释了氮化物层中硼传输的抑制,在渗流模型中,硼传输被足够厚的氮化物阻挡,并与氮氧化物合金中的氧化物分数成比例。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号