首页> 外文期刊>IEEE Transactions on Electron Devices >A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application—Part II: Full Device Model and Circuit Performance Benchmarking
【24h】

A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application—Part II: Full Device Model and Circuit Performance Benchmarking

机译:包含非理想性的碳纳米管场效应晶体管的紧凑SPICE模型及其应用-第二部分:完整器件模型和电路性能基准

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a complete circuit-compatible compact model for single-walled carbon-nanotube field-effect transistors (CNFETs) as an extension to Part 1 of this two-part paper. For the first time, a universal circuit-compatible CNFET model including the practical device nonidealities is implemented with HSPICE. In addition to the nonidealities included in the companion paper, this paper includes the elastic scattering in the channel region, the resistive source/drain (S/D), the Schottky-barrier resistance, and the parasitic gate capacitances. More than one nanotube per device can be modeled. Compared to silicon technology, the CNFETs show much better device performance based on the intrinsic gate-delay metric (six times for nFET and 14 times for pFET) than the MOSFET device at the 32-nm node, even with device nonidealities. This large speed improvement is significantly degraded (by a factor of five to eight) by interconnect capacitance in a real circuit environment. We performed circuit-performance comparison with all the standard digital library cells between CMOS random logic and CNFET random logic with HSPICE simulation. Compared to CMOS circuits, the CNFET circuits with one to ten carbon nanotubes per device is about two to ten times faster, the energy consumption per cycle is about seven to two times lower, and the energy-delay product is about 15-20 times lower, considering the realistic layout pattern and the interconnect wiring capacitance.
机译:本文提出了一个完整的电路兼容紧凑模型,用于单壁碳纳米管场效应晶体管(CNFET),作为对这一两部分论文第1部分的扩展。 HSPICE首次实现了包含实际器件非理想性的通用电路兼容CNFET模型。除了随附论文中包含的非理想性之外,本文还包括沟道区域中的弹性散射,电阻源/漏(S / D),肖特基势垒电阻和寄生栅极电容。每个设备可以建模多个纳米管。与硅技术相比,基于32节点的MOSFET器件,基于本征栅极延迟度量(nFET的六倍,pFET的14倍),CNFET的器件性能要好得多,即使存在器件非理想性。在实际电路环境中,互连电容会大大降低这种大的速度提高幅度(五到八倍)。我们使用HSPICE仿真,对CMOS随机逻辑和CNFET随机逻辑之间的所有标准数字库单元进行了电路性能比较。与CMOS电路相比,每个器件具有一到十个碳纳米管的CNFET电路快大约2到十倍,每个周期的能耗低大约七到两倍,而能量延迟积大约低15-20倍,考虑实际的布局模式和互连布线电容。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号