首页> 外文期刊>Electron Devices, IEEE Transactions on >Grain-Orientation Induced Work Function Variation in Nanoscale Metal-Gate Transistors—Part II: Implications for Process, Device, and Circuit Design
【24h】

Grain-Orientation Induced Work Function Variation in Nanoscale Metal-Gate Transistors—Part II: Implications for Process, Device, and Circuit Design

机译:纳米级金属门晶体管中晶粒取向引起的功函数变化-第二部分:对工艺,器件和电路设计的影响

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the process, device, and circuit design implications of grain-orientation-induced work function variation (WFV) in high-$k$/metal-gate devices. WFV is caused by the dependence of the work function of metal grains on their orientations and is analytically modeled in the companion paper (part I). Using this modeling framework, various implications of WFV are investigated in this paper. It is shown that process designers can utilize the proposed models to reduce the impact of WFV by identifying proper materials and fabrication processes. For instance, four types of metal nitride gate materials (TiN and TaN for NMOS devices and WN and MoN for PMOS devices) are studied, and it is shown that TiN and WN result in lower $V_{rm th}$ fluctuations. Moreover, device engineers can study the impact of WFV on various types of classical and nonclassical metal-gate CMOS transistors using these analytical models. As an example, it is shown that, for a given channel length, single-fin FinFETs are less affected by WFV compared to fully depleted SOI and bulk-Si devices due to their larger gate area. Furthermore, circuit designers can benefit from the proposed modeling framework that allows straightforward evaluation of the key performance and reliability parameters of the circuits under such $V_{rm th}$ fluctuations. For instance, an SRAM cell is analyzed in the presence of $V_{rm th}$ fluctuations due to WFV, and it is shown that such variations can result in considerable performance and reliability degradation.
机译:本文研究了在高$ k $ /金属栅器件中晶粒取向引起的功函数变化(WFV)的过程,器件和电路设计的含义。 WFV是由金属晶粒的功函数对它们的方向的依赖性引起的,并在随附的论文中进行了分析建模(第一部分)。使用此建模框架,本文研究了WFV的各种含义。结果表明,工艺设计者可以通过识别合适的材料和制造工艺,利用所提出的模型来减少WFV的影响。例如,研究了四种类型的金属氮化物栅极材料(用于NMOS器件的TiN和TaN以及用于PMOS器件的WN和MoN),并显示TiN和WN导致较小的$ V_ {rm th} $波动。此外,设备工程师可以使用这些分析模型研究WFV对各种类型的经典和非经典金属栅CMOS晶体管的影响。举例说明,对于给定的沟道长度,单鳍FinFET的栅极面积较大,因此与完全耗尽的SOI和体硅器件相比,WFV对WFV的影响较小。此外,电路设计者可以从所提出的建模框架中受益,该模型框架允许在这样的$ V_ {rm th} $波动下直接评估电路的关键性能和可靠性参数。例如,在存在因WFV引起的$ V_ {rm th} $波动的情况下分析SRAM单元,结果表明这种变化会导致相当大的性能和可靠性下降。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号