首页> 外文期刊>IEEE Transactions on Electron Devices >Cu/Low-$k$ Interconnect Technology Design and Benchmarking for Future Technology Nodes
【24h】

Cu/Low-$k$ Interconnect Technology Design and Benchmarking for Future Technology Nodes

机译:未来技术节点的铜/低-k $互连技术设计和基准测试

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the performances of conventional Cu/low-$k$ multilevel interconnect networks (MINs) for FinFETs at the 20-, 16-, 14-, 10-, and 7-nm technology nodes corresponding to the even years between 2012 and 2020, respectively. This paper captures the impacts of interconnect variables, such as size effect parameters, barrier/liner bilayer thickness, and aspect ratio on the design and performance of the MIN of a logic core. The number of metal levels for a high-performance chip increases by as large as 34% due to size effects, and this value can go up to 76% considering issues in barrier/liner thickness scaling at the 7-nm technology node. At this node, increasing the aspect ratio of interconnects from two to three can improve wire delay and save two metal levels at the cost of 35% more power dissipation. A ${pm}{20%}$ wire-width variation induces wire delay variations of ${-}{20%}$ and 44% at minimum-width wires. Designing the MIN considering this variation increases the required wire area by 4% in the worst case.
机译:本文研究了20纳米,16纳米,14纳米,10纳米和7纳米技术节点上对应于2012年至2008年偶数年的FinFET的常规Cu / low-k $多级互连网络(MIN)的性能。 2020年本文描述了互连变量的影响,例如尺寸效应参数,势垒/衬里双层厚度以及纵横比对逻辑核的MIN设计和性能的影响。由于尺寸效应,高性能芯片的金属层数最多增加34%,考虑到7纳米技术节点的势垒/衬里厚度缩放的问题,该值可以提高到76%。在此节点上,将互连的纵横比从两个增加到三个可以改善布线延迟并节省两个金属层,但功耗却增加了35%。 $ {pm} {20%} $的线宽变化会引起$ {-} {20%} $的线延迟变化,而最小宽度的线会引起44%的线延迟变化。在最坏的情况下,考虑这种变化设计MIN会使所需的导线面积增加4%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号