首页> 外文期刊>IEEE Transactions on Electron Devices >Si Nanowire With Integrated Space-Charge- Limited Conducted Schottky Junction for Enhancing Field Electron Emission and Its Gated Devices
【24h】

Si Nanowire With Integrated Space-Charge- Limited Conducted Schottky Junction for Enhancing Field Electron Emission and Its Gated Devices

机译:具有集成空间充电的Si纳米线 - 有限公司进行了肖特基结,用于增强现场电子发射及其门控设备

获取原文
获取原文并翻译 | 示例
           

摘要

Integrated field emission electron sources with low driving voltage are desired for microano vacuum electronics. Herein, we demonstrate the enhanced and stable electron emission from crystalline gold-silver (Au-Ag) alloy nanoparticle capped Si nanowires (SiNWs) and the achieved gated electron sources with low driving voltage (<50 V). Thermally induced self-assembly hemispherical (50-80 nm) crystalline Au-Ag nanoparticles were prepared and used as masks in plasma etching to form vertically aligned high aspect ratio (similar to 14) SiNWs. The nanoparticles were preserved after the etching, forming in situ integrated Au-Ag/Si junctions with each individual SiNWs. The SiNWs with capped nanoparticles possess superior field emission current density (45.80 mA/cm(2)) and current stability (fluctuation similar to 6%). A self-aligned process was developed to fabricate gated field emission devices, using the Au-Ag nanoparticle capped SiNWs as cathode. The gated devices showed field emission at low gate voltage (69.52- mu A/cm(2) at 42.1 V). Experimental and numerical simulation studies demonstrated the Au-Ag/Si contact behaved as space-charge-limited (SCL) Schottky conduction. The idea behind the enhancing and stable emission is that the SCL-Schottky junction undergoes a process of negative feedback and thus suppressed the current and shot-noise from the outstanding SiNWs. Accordingly, more SiNWs were activated and contributed stable and higher field emission current.
机译:微/纳米真空电子器件期望具有低驱动电压的集成场发射电子源。在此,我们证明了来自晶体金 - 银(Au-Ag)合金纳米粒子盖Si纳米线(SINW)的增强且稳定的电子发射,并且实现了具有低驱动电压(<50V)的达到的栅极电子来源。制备热诱导的自组装半球(50-80nm)结晶Au-Ag纳米颗粒,并用作等离子体蚀刻中的掩模,形成垂直对准的高纵横比(类似于14)SinW。在蚀刻后保留纳米颗粒,与每个SINWS原位形成原位集成的Au-Ag / Si结。具有封端纳米颗粒的SINWS具有优异的场发射电流密度(45.80mA / cm(2))和电流稳定性(波动与6%相似)。开发了一种自对准的过程以使用Au-Ag纳米粒子覆盖Sinws作为阴极来制造门控场发射装置。门控设备显示在低栅极电压(42.1V)处的低栅极电压(69.52-mu a / cm(2))的场发射。实验性和数值模拟研究表明AU-AG / SI接触表现为空间电荷限制(SCL)肖特基传导。增强和稳定排放背后的想法是SCL-Schottky联信经历了负反馈的过程,从而抑制了杰出的SINWS的电流和射击噪声。因此,激活更多Sinws并促进稳定且较高的场发射电流。

著录项

  • 来源
    《IEEE Transactions on Electron Devices》 |2020年第10期|4467-4472|共6页
  • 作者单位

    Sun Yat Sen Univ State Key Lab Optoelect Mat & Technol Guangdong Prov Key Lab Display Mat & Technol Sch Elect & Informat Technol Guangzhou 510275 Peoples R China;

    Sun Yat Sen Univ State Key Lab Optoelect Mat & Technol Guangdong Prov Key Lab Display Mat & Technol Sch Elect & Informat Technol Guangzhou 510275 Peoples R China;

    Beijing Orient Inst Measurement & Test Beijing 100029 Peoples R China;

    Sun Yat Sen Univ State Key Lab Optoelect Mat & Technol Guangdong Prov Key Lab Display Mat & Technol Sch Elect & Informat Technol Guangzhou 510275 Peoples R China;

    Lanzhou Inst Phys Natl Key Lab Sci & Technol Vacuum Technol & Phys Lanzhou 730000 Peoples R China;

    Lanzhou Inst Phys Natl Key Lab Sci & Technol Vacuum Technol & Phys Lanzhou 730000 Peoples R China;

    Sun Yat Sen Univ State Key Lab Optoelect Mat & Technol Guangdong Prov Key Lab Display Mat & Technol Sch Elect & Informat Technol Guangzhou 510275 Peoples R China;

    Sun Yat Sen Univ State Key Lab Optoelect Mat & Technol Guangdong Prov Key Lab Display Mat & Technol Sch Elect & Informat Technol Guangzhou 510275 Peoples R China;

    Sun Yat Sen Univ State Key Lab Optoelect Mat & Technol Guangdong Prov Key Lab Display Mat & Technol Sch Elect & Informat Technol Guangzhou 510275 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Au-Ag alloy nanoparticles; ballasted unit; field electron emission; Schottky junction; Si nanowires (SiNWs); space-charge-limited (SCL) conduction;

    机译:Au-Ag合金纳米粒子;镇静单元;现场电子发射;肖特基结;Si纳米线(SINW);空间充电限制(SCL)导通;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号