首页> 外文期刊>Radiation Detection Technology and Methods >Simulation of plasma properties in magnetron sputtering for two kinds of cathode targets
【24h】

Simulation of plasma properties in magnetron sputtering for two kinds of cathode targets

机译:两种阴极靶材在磁控溅射中的等离子体特性模拟

获取原文
获取原文并翻译 | 示例

摘要

Introduction During magnetron sputtering process, the common structure of cathode target is planar target and cylindrical rotating target. In this study, cylindrical rotating target is used and two kinds of cathode targets were investigated by COMSOL Multiphysics software (The official network of COMSOL Multiphysics software. https://uk.comsol.com/). We will elucidate the difference between the two types of cathode target and determine the type of cathode target used in the final experiment.The system configuration We explore the plasma distribution in the radio frequency cavity, so the simulation process was divided into two steps: building RF cavity model and setting up plasma discharge parameters. The main part of the model included the radio frequency cavity substrate (divided into two tube parts and middle ellipsoid part), the cathode and the magnet. And the plasma discharge parameters are as follows: Ar gas was used with 1.5 Pa; magnetic field strength of iron core was set to 1000 Gs; the applied voltage of cathode was set to - 160 V; and anode was set to 0 V.Conclusion For the long cathode target and the short cathode target, the main difference is the electric field distribution. Because the electric field lines are denser for the long cathode target, the electric field intensity is stronger, and then the initial energy obtained by electrons is higher. During the plasma discharge process, because of the high electron energy, the plasma density produced is more than the simulation of the short cathode target. And under the same simulation time, the residual energy of electrons is more for the long cathode target, which is the reason for the higher electron temperature. From the previous experimental experience, we know that the film quality formed by higher electron energy is better. The simulation in this work shows that the electron energy corresponding to the long cathode target is higher than that of the short cathode target, so we choose the long cathode target as the experimental target in the subsequent coating experiments.
机译:引言在磁控溅射过程中,阴极靶的常见结构为平面靶和圆柱形旋转靶。在这项研究中,使用了圆柱形旋转靶,并通过COMSOL Multiphysics软件(COMSOL Multiphysics软件的官方网络,https://uk.comsol.com/)研究了两种阴极靶。我们将阐明两种阴极靶之间的区别,并确定最终实验中使用的阴极靶的类型。系统配置我们研究了射频腔中的等离子体分布,因此将仿真过程分为两个步骤:建立射频腔模型并设置等离子体放电参数。该模型的主要部分包括射频腔基板(分为两个管部分和中间的椭圆体部分),阴极和磁体。等离子体放电参数如下:使用1.5Pa的氩气;使用1.5Pa的氩气。铁芯的磁场强度为1000Gs。阴极的施加电压设定为-160V。阳极设置为0V。结论对于长阴极靶和短阴极靶,主要区别在于电场分布。因为对于长阴极靶而言电场线更密集,所以电场强度较强,因此电子获得的初始能量较高。在等离子体放电过程中,由于高电子能量,所产生的等离子体密度大于短阴极靶的模拟。在相同的仿真时间下,长阴极靶的电子剩余能量更多,这是电子温度较高的原因。根据以前的实验经验,我们知道由较高的电子能量形成的薄膜质量更好。这项工作的模拟表明,与长阴极靶相对应的电子能量高于短阴极靶,因此在随后的涂层实验中我们选择长阴极靶作为实验靶。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号