...
首页> 外文期刊>IFAC PapersOnLine >Steering Control Strategies for a Four-Wheel-Independent-Steering Bin Managing Robot
【24h】

Steering Control Strategies for a Four-Wheel-Independent-Steering Bin Managing Robot

机译:四轮独立转向箱管理机器人的转向控制策略

获取原文
           

摘要

Abstract: Automatic steering systems are a standard function for robotic agricultural equipment. Ackerman steering is the most common type of steering mechanism on such equipment, making them perform as car-like vehicles. Because of their kinematic constraints, it is quite difficult to maneuver carlike vehicles effectively in orchards due to confined working space, constrained by physical boundaries such as tree rows and other obstacles. To remove such technical difficulties, more sophisticated steering mechanisms and steering control strategies are required for robotic agricultural equipment. In order to conveniently manage fruit bins in confined tree aisles constrained by high density tree rows, a robotic bin management system, called bin-dog system, implementable in typical Washington State tree fruit orchards has been developed. This bin-dog system adopted a four-wheel-independent-steering (4WIS) mechanism as the solution to achieve the necessary drivability and maneuverability. To provide adequate controllability to this 4WIS, a four-mode steering strategy, including Ackermann steering, active front and rear steering (AFRS), crab steering, and spinning, were designed for this bin-dog to manage fruit bins effectively in the confined orchard space. This control system makes it possible for the bin-dog system to switch between four steering modes using the most appropriate steering mode to complete all maneuvering tasks in a most effective way. To design such a control system, it is important to understand the influence of major factors, such as longitudinal speed and control gain on performance under different steering modes when tracking various paths. In this paper, a pure pursuit method was implemented using a GPS-based navigation to evaluate auto-steering performance with both Ackermann steering and AFRS modes. Field tests were conducted to assess the navigation performance using different steering strategies when tracking different paths. The results indicated that by properly selecting a steering strategy for the situation, it is possible to achieve a satisfactory path tracking performance for tracking curvy paths or completing tasks such as merging and cornering.
机译:摘要:自动转向系统是机器人农业设备的标准功能。 Ackerman转向是此类设备上最常见的转向机构,可使其像汽车一样行驶。由于其运动学上的限制,由于果园空间有限,并受到诸如树行和其他障碍物等物理边界的限制,很难在果园中有效地操纵类似汽车的车辆。为了消除这些技术难题,机器人农业设备需要更复杂的转向机构和转向控制策略。为了方便地管理受限于高密度树行的密闭树道中的果箱,已经开发了可在典型的华盛顿州果树园中实施的机器人箱管理系统,称为箱狗系统。该bin-dog系统采用四轮独立转向(4WIS)机制作为解决方案,以实现必要的可驾驶性和可操纵性。为了给此4WIS提供足够的可控制性,该垃圾桶狗设计了四模式转向策略,包括Ackermann转向,主动前后转向(AFRS),蟹形转向和旋转,以有效地管理密闭果园中的果箱空间。该控制系统使垃圾箱系统能够使用最合适的转向模式在四种转向模式之间切换,从而以最有效的方式完成所有操纵任务。为了设计这样的控制系统,重要的是要了解主要因素的影响,例如纵向速度和控制增益在跟踪各种路径时在不同转向模式下的性能。在本文中,使用基于GPS的导航实施纯跟踪方法来评估Ackermann转向和AFRS模式下的自动转向性能。在跟踪不同路径时,进行了现场测试,以使用不同的转向策略评估导航性能。结果表明,通过适当选择的局面转向战略,就可以实现跟踪弯曲的路径或完成任务,如合并和转弯满意的路径跟踪性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号