...
首页> 外文期刊>International Journal of Advanced Robotic Systems >Design of a cable-driven hyper-redundant robot with experimental validation:
【24h】

Design of a cable-driven hyper-redundant robot with experimental validation:

机译:带有实验验证的电缆驱动超冗余机器人的设计:

获取原文

摘要

This article presents a test bed for comprehensive study of a cable-driven hyper-redundant robot in terms of mechanical design, kinematics analysis, and experimental verification. To design the hyper-redundant robot, the multiple section structure is used. Each section consists of two rotational joints, a link mechanism, and three cables. In this sense, two degrees of freedom are achieved. For kinematics analysis between the actuator space and joint space, each section of the development is treated as three sphericala??prismatica??spherical chains and a universal joint chain (3-SPS-U), which results in a four-chain parallel mechanism model. In order to obtain the forward kinematics from the joint space to task space directly and easily, the coordinate frames are established by the geometrical rules rather than the traditional Denavita??Hartenburg (D-H) rules. To solve the problem of inverse kinematics analysis, we utilize the product of exponentials approach. Finally, a prototype of 24-degrees of freedom hyper-redundant robot with 12 sections and 36 cables is fabricated and an experiment platform is built for real-time control of the robot. Different experiments in terms of trajectories tracking test, positioning accuracy test, and payload test are conducted for the validation of both mechanical design and model development. Experiment results demonstrate that the presented hyper-redundant robot has fine position accuracy, flexibility with mean position error less than 2%, and good load capacity.
机译:本文提供了一个试验台,用于在机械设计,运动学分析和实验验证方面全面研究电缆驱动的超冗余机器人。为了设计超冗余机器人,使用了多部分结构。每个部分由两个旋转接头,一个连杆机构和三根电缆组成。从这个意义上讲,实现了两个自由度。为了对执行器空间和关节空间之间的运动学进行分析,将开发的每个部分都视为三个球形,方形,球形和通用关节链(3-SPS-U),从而产生了四链并联机制模型。为了从关节空间到任务空间直接轻松地获得正向运动学,坐标系是通过几何规则而不是传统的Denavita ?? Hartenburg(D-H)规则建立的。为了解决逆运动学分析的问题,我们利用了指数方法的乘积。最后,制造了具有12个部分和36条电缆的24自由度超冗余机器人原型,并构建了用于实时控制机器人的实验平台。为了验证机械设计和模型开发,进行了轨迹跟踪测试,定位精度测试和有效载荷测试方面的不同实验。实验结果表明,所提出的超冗余机器人具有良好的位置精度,灵活性,平均位置误差小于2%,并且具有良好的负载能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号