首页> 美国政府科技报告 >Design and Experimental Validation of a Simple Controller for a Multi-Segment Magnetic Crawler Robot.
【24h】

Design and Experimental Validation of a Simple Controller for a Multi-Segment Magnetic Crawler Robot.

机译:多段磁力履带机器人简易控制器的设计与实验验证。

获取原文

摘要

A novel, multi-segmented magnetic crawler robot has been designed for ship hull inspection. In its simplest version passive linkages that provide two degrees of relative motion connect front and rear driving modules, so the robot can twist and turn. This permits its navigation over surface discontinuities while maintaining its adhesion to the hull. During operation, the magnetic crawler receives forward and turning velocity commands from either a tele-operator or high-level, autonomous control computer. A low-level, embedded microcomputer handles the commands to the driving motors. This paper presents the development of a simple, low-level, leader-follower controller that permits the rear module to follow the front module. The kinematics and dynamics of the two-module magnetic crawler robot are described. The robot's geometry, kinematic constraints and the user-commanded velocities are used to calculate the desired instantaneous center of rotation and the corresponding central-linkage angle necessary for the back module to follow the front module when turning. The commands to the rear driving motors are determined by applying PID control on the error between the desired and measured linkage angle position. The controller is designed and tested using Matlab Simulink. It is then implemented and tested on an early two-module magnetic crawler prototype robot. Results of the simulations and experimental validation of the controller design are presented.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号