首页> 外文期刊>Cybernetics, IEEE Transactions on >Activity Discovery and Activity Recognition: A New Partnership
【24h】

Activity Discovery and Activity Recognition: A New Partnership

机译:活动发现和活动识别:新的合作伙伴关系

获取原文
获取原文并翻译 | 示例

摘要

Activity recognition has received increasing attention from the machine learning community. Of particular interest is the ability to recognize activities in real time from streaming data, but this presents a number of challenges not faced by traditional offline approaches. Among these challenges is handling the large amount of data that does not belong to a predefined class. In this paper, we describe a method by which activity discovery can be used to identify behavioral patterns in observational data. Discovering patterns in the data that does not belong to a predefined class aids in understanding this data and segmenting it into learnable classes. We demonstrate that activity discovery not only sheds light on behavioral patterns, but it can also boost the performance of recognition algorithms. We introduce this partnership between activity discovery and online activity recognition in the context of the CASAS smart home project and validate our approach using CASAS data sets.
机译:活动识别越来越受到机器学习社区的关注。特别令人感兴趣的是能够从流数据中实时识别活动的能力,但这带来了传统脱机方法未面临的许多挑战。这些挑战之一是处理不属于预定义类的大量数据。在本文中,我们描述了一种方法,通过该方法,活动发现可用于识别观测数据中的行为模式。在数据中发现不属于预定义类的模式有助于理解该数据并将其细分为可学习的类。我们证明了活动发现不仅揭示了行为模式,而且还可以提高识别算法的性能。我们在CASAS智能家居项目的背景下介绍了活动发现与在线活动识别之间的这种伙伴关系,并使用CASAS数据集验证了我们的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号