首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Discovery and Recognition of Emerging Human Activities Using a Hierarchical Mixture of Directional Statistical Models
【24h】

Discovery and Recognition of Emerging Human Activities Using a Hierarchical Mixture of Directional Statistical Models

机译:使用定向统计模型的分层混合物发现和识别新兴人类活动

获取原文
获取原文并翻译 | 示例

摘要

Human activity recognition plays a significant role in enabling pervasive applications as it abstracts low-level noisy sensor data into high-level human activities, which applications can respond to. With more and more activity-aware applications deployed in real-world environments, a research challenge emerges-discovering and learning new activities that have not been pre-defined or observed in the training phase. This paper tackles this challenge by proposing a hierarchical mixture of directional statistical models. The model supports incrementally, continuously updating the activity model over time with the reduced annotation effort and without the need for storing historical sensor data. We have validated this solution on four publicly available, third-party smart home datasets, and have demonstrated up to 91.5 percent accuracies of detecting and recognising new activities.
机译:人类活动识别在使普及应用程序摘要将低级嘈杂的传感器数据归于高级人类活动中发挥着重要作用,该应用程序可以响应。通过在现实世界中部署的越来越多的活动感知应用程序,在培训阶段发现和学习尚未预先定义或观察的新活动出现了研究挑战。本文通过提出方向统计模型的分层混合来解决这一挑战。该模型逐步支持,随着时间的推移持续更新活动模型,并随着减少的注释工作,而无需存储历史传感器数据。我们在四个公共可用的第三方智能家庭数据集中验证了此解决方案,并展示了检测和识别新活动的高达91.5%的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号