首页> 外文期刊>Cybernetics, IEEE Transactions on >A Novel Extreme Learning Control Framework of Unmanned Surface Vehicles
【24h】

A Novel Extreme Learning Control Framework of Unmanned Surface Vehicles

机译:一种新型的无人水面飞行器极限学习控制框架

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an extreme learning control (ELC) framework using the single-hidden-layer feedforward network (SLFN) with random hidden nodes for tracking an unmanned surface vehicle suffering from unknown dynamics and external disturbances is proposed. By combining tracking errors with derivatives, an error surface and transformed states are defined to encapsulate unknown dynamics and disturbances into a lumped vector field of transformed states. The lumped nonlinearity is further identified accurately by an extreme-learning-machine-based SLFN approximator which does not require system knowledge nor tuning input weights. Only output weights of the SLFN need to be updated by adaptive projection-based laws derived from the Lyapunov approach. Moreover, an error compensator is incorporated to suppress approximation residuals, and thereby contributing to the robustness and global asymptotic stability of the closed-loop ELC system. Simulation studies and comprehensive comparisons demonstrate that the ELC framework achieves high accuracy in both tracking and approximation.
机译:在本文中,提出了一种使用单隐层前馈网络(SLFN)和随机隐藏节点的极限学习控制(ELC)框架,该框架用于跟踪遭受未知动力学和外部干扰的无人地面车辆。通过将跟踪误差与导数相结合,定义了误差面和变换状态,以将未知的动力学和扰动封装到变换状态的集总矢量场中。基于极端学习机的SLFN逼近器可进一步准确识别集总的非线性,而无需系统知识或调整输入权重。仅需要通过从Lyapunov方法获得的基于自适应投影的定律来更新SLFN的输出权重。此外,集成了误差补偿器以抑制近似残差,从而有助于闭环ELC系统的鲁棒性和全局渐近稳定性。仿真研究和综合比较表明,ELC框架在跟踪和逼近方面均达到了高精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号