首页> 外文期刊>Control Theory & Applications, IET >Friction and uncertainty compensation of robot manipulator using optimal recurrent cerebellar model articulation controller and elasto-plastic friction observer
【24h】

Friction and uncertainty compensation of robot manipulator using optimal recurrent cerebellar model articulation controller and elasto-plastic friction observer

机译:最优递归小脑模型关节控制器和弹塑性摩擦观测器对机器人机械臂的摩擦和不确定性补偿

获取原文
获取原文并翻译 | 示例

摘要

A model-free control scheme with the elasto-plastic friction observer is presented for robust and high-precision positioning of a robot manipulator. The traditional model-based adaptive controller requires information on the robotic dynamics in advance and thus undergoes robustness problem because of complex dynamics and non-linear frictions of a robot system. This problem is overcome by an employed model-free recurrent cerebellar model articulation controller (RCMAC) system and friction estimator for friction and uncertainty compensation of a robot manipulator. The adaptive laws of the RCMAC networks to approximate an ideal equivalent sliding mode control law and adaptive friction estimation laws based on the elasto-plastic friction model are derived based on the Lyapunov stability analysis. To guarantee stability and increase convergence speed of the RCMAC network, the optimal learning rates are obtained by the fully informed particle swarm (FIPS) algorithm. The robust positioning performance of the proposed control scheme is verified by simulation and experiment for the Scorbot robot in the presence of the joint dynamic friction and uncertainty.
机译:提出了一种具有弹塑性摩擦观测器的无模型控制方案,该方案可实现机器人操纵器的鲁棒且高精度定位。传统的基于模型的自适应控制器需要事先提供有关机器人动力学的信息,因此会由于机器人系统复杂的动力学和非线性摩擦而遭受鲁棒性问题。通过采用无模型的递归小脑模型关节运动控制器(RCMAC)系统和用于机器人操纵器的摩擦和不确定性补偿的摩擦估计器,可以克服此问题。基于Lyapunov稳定性分析,推导了近似于理想等效滑模控制律的RCMAC网络的自适应律和基于弹塑性摩擦模型的自适应摩擦估计律。为了保证RCMAC网络的稳定性并提高其收敛速度,可通过全知悉粒子群(FIPS)算法获得最佳学习率。在关节动态摩擦和不确定性存在的情况下,通过对Scorbot机器人进行仿真和实验,验证了所提出控制方案的鲁棒定位性能。

著录项

  • 来源
    《Control Theory & Applications, IET》 |2011年第18期|p.2120-2141|共22页
  • 作者

    Han S.I.; Lee J.M.;

  • 作者单位

    School of Electrical Engineering, Pusan National University, Busan, Republic of Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号