首页> 外文期刊>Control Theory & Applications, IET >Data-driven terminal iterative learning control with high-order learning law for a class of non-linear discrete-time multiple-input–multiple output systems
【24h】

Data-driven terminal iterative learning control with high-order learning law for a class of non-linear discrete-time multiple-input–multiple output systems

机译:一类非线性离散多输入多输出系统的数据驱动终端迭代学习控制,具有高阶学习律

获取原文
获取原文并翻译 | 示例

摘要

In this study, a novel data-driven terminal iterative learning control with high-order learning law is proposed for a class of non-linear non-affine discrete-time multiple-input–multiple output systems, where only the system state or output at the endpoint is measurable and the control input is time-varying. A new data-driven dynamical linearisation is proposed in the iteration domain and the linearisation data model can be updated by a designed parameter updating law iteratively. The high-order learning control law makes it possible to utilise more control knowledge of previous runs to improve control performance. The design and analysis of the proposed approach only depends on the I/O data of the control plant without requiring any explicit model information. Both theoretical analysis and extensive simulations are provided to confirm the effectiveness and applicability of this novel approach.
机译:在这项研究中,针对一类非线性非仿射离散时间多输入多输出系统,提出了一种具有高阶学习律的新型数据驱动终端迭代学习控制,其中只有系统状态或输出处于端点是可测量的,控制输入是随时间变化的。在迭代域中提出了一种新的数据驱动的动态线性化方法,该线性化数据模型可以通过设计的参数更新定律进行迭代更新。高阶学习控制定律使得可以利用先前运行的更多控制知识来改善控制性能。所提出方法的设计和分析仅取决于控制站的I / O数据,而无需任何明确的模型信息。提供理论分析和广泛的模拟,以确认这种新颖方法的有效性和适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号