首页> 中文期刊> 《模式识别与人工智能》 >具有扰动的非线性系统高阶迭代学习控制

具有扰动的非线性系统高阶迭代学习控制

     

摘要

迭代学习控制(ILC)利用系统的重复性不断改进控制性能。本文讨论一类具有扰动的非线性、时变系统高阶迭代学习控制算法及其迭代学习收敛的充分条件,并与D型迭代学习算法相比,讨论典型PD高阶ILC算法的收敛速度。仿真结果证实高阶ILC算法具有更快的收敛速度,并且当系统满足收敛条件、不确定项及输出扰动项有界时迭代学习收敛。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号