首页> 外文期刊>Control Theory & Applications, IET >Robust higher-order ILC for non-linear discrete-time systems with varying trail lengths and random initial state shifts
【24h】

Robust higher-order ILC for non-linear discrete-time systems with varying trail lengths and random initial state shifts

机译:具有可变步长和随机初始状态偏移的非线性离散时间系统的鲁棒高阶ILC

获取原文
获取原文并翻译 | 示例

摘要

This study addresses a robust iterative learning control (ILC) scheme for non-linear discrete-time systems in which both the trail lengths and the initial state shifts could be randomly variant in iteration domain. The proposed higher-order ILC law guarantees that as the iteration number goes to infinity, the ILC tracking errors at the desired output trail period are bounded in mathematical expectation, and the bound of tracking errors is proportional to the random initial state shifts. Specifically, the ILC tracking errors in mathematical expectation can be driven to zero as the expectation of initial state shifts is zero. Two numerical examples are carried out to demonstrate the effectiveness of the proposed higher-order ILC law.
机译:这项研究针对非线性离散时间系统提出了一种鲁棒的迭代学习控制(ILC)方案,其中轨迹长度和初始状态偏移都可以在迭代域中随机变化。拟议的高阶ILC律保证,随着迭代次数达到无穷大,所需输出尾迹周期的ILC跟踪误差将在数学期望中有界,并且跟踪误差的界与随机初始状态偏移成正比。具体而言,由于初始状态偏移的期望为零,因此可以将数学期望中的ILC跟踪误差驱动为零。进行了两个数值算例,以证明所提出的高阶ILC法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号