首页> 外文期刊>IEEE Transactions on Control Systems Technology >Adaptive Neural Network Feedforward Control for Dynamically Substructured Systems
【24h】

Adaptive Neural Network Feedforward Control for Dynamically Substructured Systems

机译:动态子结构系统的自适应神经网络前馈控制

获取原文
获取原文并翻译 | 示例

摘要

The potential applications of dynamically substructured systems (DSSs) with both numerical and physical substructures can be found in diverse dynamics testing fields. In this paper, an adaptive feedforward controller based on a neural network (NN) is proposed to improve the DSS testing performance. To facilitate the NN compensation design, a modified DSS framework is developed so that the DSS control can be considered as a regulation problem with disturbance rejection. Then an adaptive NN feedforward compensation technique is proposed to cope with uncertainties and nonlinearities in the DSS physical substructure. The proposed NN technique generalizes the existing results in the literature, and it does not require any information of the plant model and disturbance model, which significantly simplifies its application on DSS. In particular, we propose a novel adaptive law for the NN online learning, where appropriate NN weight error information is derived and used to achieve improved performance. Real-time experimental results on a mechanical test rig demonstrate the improved performance by using the NN compensation strategy and the new adaptation law.
机译:具有数字和物理子结构的动态子结构系统(DSS)的潜在应用可以在各种动力学测试领域中找到。本文提出了一种基于神经网络的自适应前馈控制器,以提高DSS的测试性能。为了促进NN补偿设计,开发了改进的DSS框架,使得DSS控制可以被视为具有干扰抑制的调节问题。然后提出了一种自适应神经网络前馈补偿技术,以解决DSS物理子结构中的不确定性和非线性问题。所提出的神经网络技术概括了文献中的现有结果,并且不需要任何关于工厂模型和扰动模型的信息,从而极大地简化了其在DSS上的应用。特别是,我们提出了一种适用于NN在线学习的新的自适应律,其中适当的NN权重误差信息被导出并用于实现改进的性能。在机械试验台上的实时实验结果表明,通过使用NN补偿策略和新的适应律,可以提高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号