首页> 美国卫生研究院文献>Proceedings. Mathematical Physical and Engineering Sciences >Modelling and control issues of dynamically substructured systems: adaptive forward prediction taken as an example
【2h】

Modelling and control issues of dynamically substructured systems: adaptive forward prediction taken as an example

机译:动态子结构系统的建模和控制问题:以自适应正向预测为例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Testing techniques of dynamically substructured systems dissects an entire engineering system into parts. Components can be tested via numerical simulation or physical experiments and run synchronously. Additional actuator systems, which interface numerical and physical parts, are required within the physical substructure. A high-quality controller, which is designed to cancel unwanted dynamics introduced by the actuators, is important in order to synchronize the numerical and physical outputs and ensure successful tests. An adaptive forward prediction (AFP) algorithm based on delay compensation concepts has been proposed to deal with substructuring control issues. Although the settling performance and numerical conditions of the AFP controller are improved using new direct-compensation and singular value decomposition methods, the experimental results show that a linear dynamics-based controller still outperforms the AFP controller. Based on experimental observations, the least-squares fitting technique, effectiveness of the AFP compensation and differences between delay and ordinary differential equations are discussed herein, in order to reflect the fundamental issues of actuator modelling in relevant literature and, more specifically, to show that the actuator and numerical substructure are heterogeneous dynamic components and should not be collectively modelled as a homogeneous delay differential equation.
机译:动态子结构化系统的测试技术将整个工程系统分解为多个部分。组件可以通过数值模拟或物理实验进行测试,并可以同步运行。在物理子结构中需要附加的执行器系统,这些系统连接数字和物理部分。为了使数值和物理输出同步并确保成功的测试,设计一种高质量的控制器是很重要的,该控制器旨在消除执行器引入的不必要的动力。提出了一种基于延迟补偿概念的自适应前向预测(AFP)算法,用于处理子结构控制问题。尽管使用新的直接补偿和奇异值分解方法可以改善AFP控制器的稳定性能和数值条件,但实验结果表明,基于线性动力学的控制器仍然优于AFP控制器。基于实验观察,本文讨论了最小二乘拟合技术,AFP补偿的有效性以及时滞和常微分方程之间的差异,以反映相关文献中执行器建模的基本问题,更具体地说,表明执行器和数字子结构是异质的动态组件,因此不应将其统一建模为齐次延迟微分方程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号