首页> 外文期刊>IEEE Transactions on Control Systems Technology >Application of feedforward neural networks to dynamical system identification and control
【24h】

Application of feedforward neural networks to dynamical system identification and control

机译:前馈神经网络在动力学系统辨识与控制中的应用

获取原文
获取原文并翻译 | 示例

摘要

Methods for identification and control of dynamical systems by adalines, two-layer, and three-layer feedforward neural networks (FNNs) using generalized weight adaptation algorithms are discussed. The FNNs considered contain odd nonlinear operators in both the neurons and the weight adaptation algorithms. Two application examples, each involving a nonlinear dynamical system, are considered. The first is identification of the system's forward and inverse dynamics. The second is control of the system using coordination of feedforward and feedback control combined with inverse system dynamics identification. Simulation results are used to verify the method's feasibility and to examine the effect of ENN parameter changes. Specifically the effect that the type of nonlinear activation functions present in the neurons and the type of nonlinear functions present in the weight adaptation algorithms have on FNN system dynamics identification performance is investigated.
机译:讨论了使用广义权重自适应算法通过自适应,两层和三层前馈神经网络(FNN)识别和控制动力系统的方法。所考虑的FNN在神经元和权重自适应算法中均包含奇数非线性算子。考虑了两个应用示例,每个应用示例都涉及一个非线性动力学系统。首先是识别系统的正向和反向动力学。第二个是通过前馈和反馈控制的协调结合逆系统动力学识别对系统进行控制。仿真结果用于验证该方法的可行性并检查ENN参数更改的影响。具体地,研究了神经元中存在的非线性激活函数的类型和权重自适应算法中存在的非线性函数的类型对FNN系统动力学识别性能的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号