首页> 美国卫生研究院文献>other >Role of Graph Architecture in Controlling Dynamical Networks with Applications to Neural Systems
【2h】

Role of Graph Architecture in Controlling Dynamical Networks with Applications to Neural Systems

机译:图体系结构在控制动态网络中的作用及其在神经系统中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviors such as synchronization. While descriptions of these behaviors are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behavior. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain’s control performance by removing single edges in the network. Generally, our results ground the expectation of a control system’s behavior in its network architecture, and directly inspire new directions in network analysis and design via distributed control.
机译:联网系统显示组件之间交互的复杂模式。在物理网络中,这些交互作用通常是沿着结构连接发生的,这些结构连接链接硬连线连接拓扑中的组件,从而支持各种系统范围内的动态行为,例如同步。尽管对这些行为的描述很重要,但它们只是了解和利用网络拓扑与系统行为之间关系的第一步。在这里,我们使用线性网络控制理论来得出精确的闭式表达式,这些表达式将结构连接的子集(将驱动程序节点链接到非驱动程序节点的连接)的连接性与控制联网系统所需的最小能量相关联。为了说明数学的效用,我们将这种方法应用于最近从果蝇,小鼠和人脑重建的高分辨率连接体。我们使用这些原理来建议人脑的优势,即以低昂的精力成本支持各种网络动态,同时保持对扰动的鲁棒性,并通过去除网络中的单个边缘来进行临床可控的对大脑控制性能的定向操纵。通常,我们的结果基于对控制系统在其网络体系结构中行为的期望,并通过分布式控制直接激发网络分析和设计的新方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号