首页> 外文期刊>IEEE Transactions on Control Systems Technology >Sensor Reduction of Variable Stiffness Actuated Robots Using Moving Horizon Estimation
【24h】

Sensor Reduction of Variable Stiffness Actuated Robots Using Moving Horizon Estimation

机译:使用移动地平线估计传感器减少可变刚度的机器人

获取原文
获取原文并翻译 | 示例

摘要

Variable stiffness actuated (VSA) robots are expected to play an important role in physical human-robot interaction, thanks to their inherent safety features. These systems can control the position and stiffness concurrently by incorporating two or more actuators for each joint. Unfortunately, the need for extra sensors to measure the state of these actuators decreases the reliability of these systems. In this paper, we present a sensor reduction scheme for VSA robots. Specifically, we utilize moving horizon estimation (MHE) to estimate the unmeasured states of the system. Due to its ability to handle constraints, MHE is chosen as the estimation algorithm. The estimated states are then used by a nonlinear model predictive controller to implement a closed-loop control system. In order to show the efficacy of our framework, we conducted extensive simulation and real-world experiments with a reaction wheel augmented VSA system. The objective of these experiments was to compare the control performance of the sensor reduced system (from four encoders to two encoders) with the system using the full set of states for control. The results of these experiments show the feasibility of the MHE-based sensor reduction. Sensor reduction might increase the reliability of VSA robots and might facilitate their earlier introduction to the industrial environments.
机译:由于其固有的安全功能,预计可变刚度驱动(VSA)机器人将在物理人员机器人互动中发挥重要作用。这些系统可以通过结合每个接头的两个或更多个致动器同时控制位置和刚度。不幸的是,需要额外的传感器来测量这些执行器的状态降低了这些系统的可靠性。在本文中,我们为VSA机器人提供了一种传感器减少方案。具体而言,我们利用移动地平线估计(MHE)来估计系统的未测量状态。由于其处理约束的能力,因此选择MHE作为估计算法。然后由非线性模型预测控制器使用估计的状态来实现闭环控制系统。为了展示我们框架的功效,我们通过反应轮增强VSA系统进行了广泛的仿真和现实世界实验。这些实验的目的是将传感器减少系统(从四个编码器到两个编码器)的控制性能进行比较,该系统使用全套状态进行控制。这些实验的结果表明了基于MHE的传感器减少的可行性。传感器减少可能会增加VSA机器人的可靠性,并且可能有助于他们早期的工业环境介绍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号