首页> 外文期刊>Control Systems Technology, IEEE Transactions on >Spline-Based Motion Planning for Autonomous Guided Vehicles in a Dynamic Environment
【24h】

Spline-Based Motion Planning for Autonomous Guided Vehicles in a Dynamic Environment

机译:动态环境中基于样条的自动引导车辆运动规划

获取原文
获取原文并翻译 | 示例

摘要

Autonomous vehicles require a collision-free motion trajectory at every time instant. This brief presents an optimization-based method to calculate such trajectories for autonomous vehicles operating in an uncertain environment with moving obstacles. The proposed approach applies to linear system models, as well as to a particular class of nonlinear models, including industrially relevant vehicles, such as autonomous guided vehicles with front wheel, differential wheel, and rear-wheel steering. The method computes smooth motion trajectories, satisfying the vehicle's kinematics, by using a spline parameterization. Furthermore, it exploits spline properties to keep the resulting nonlinear optimization problem small scale and to guarantee constraint satisfaction, without the need for time gridding. The resulting problem is solved sufficiently fast for online motion planning, dealing with uncertainties and changes in the environment. This brief demonstrates the potential of the method with extensive numerical simulations. In addition, it presents an experimental validation in which a KUKA youBot, steered as a holonomic or differential drive vehicle, drives through an environment with moving obstacles. To facilitate the further development and the numerical and experimental validation of the presented method, it is embodied in a user-friendly open-source software toolbox.
机译:自主车辆在每个时刻都要求无碰撞运动轨迹。本简报提出了一种基于优化的方法来计算在不确定的环境中移动障碍物的自动驾驶汽车的这种轨迹。所提出的方法适用于线性系统模型以及一类特定的非线性模型,包括与工业相关的车辆,例如具有前轮,差速轮和后轮转向的自动驾驶车辆。该方法通过使用样条曲线参数化来计算满足车辆运动学的平滑运动轨迹。此外,它利用样条曲线属性可以使生成的非线性优化问题保持较小规模,并确保约束满足,而无需进行时间网格划分。由此产生的问题可以通过在线运动计划的快速解决,处理不确定性和环境变化。本简报通过广泛的数值模拟演示了该方法的潜力。此外,它还提供了一项实验验证,其中,作为完整或差速驱动车辆驾驶的KUKA youBot可以在有移动障碍物的环境中行驶。为了促进所提出方法的进一步开发以及数值和实验验证,该方法体现在用户友好的开源软件工具箱中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号