首页> 外文期刊>Control of Network Systems, IEEE Transactions on >Distributed Generalized Nash Equilibria Computation of Monotone Games via Double-Layer Preconditioned Proximal-Point Algorithms
【24h】

Distributed Generalized Nash Equilibria Computation of Monotone Games via Double-Layer Preconditioned Proximal-Point Algorithms

机译:通过双层预处理近点算法进行单调游戏的分布式广义纳什均衡计算

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate distributed generalized Nash equilibrium (GNE) computation of monotone games with affine coupling constraints. Each player can only utilize its local objective function, local feasible set, and a local block of the coupling constraint, and can only communicate with its neighbors. We assume the game has monotone pseudo-subdifferential without Lipschitz continuity restrictions. We design novel center-free distributed GNE seeking algorithms for equality and inequality affine coupling constraints, respectively. A proximal alternating direction method of multipliers is proposed for the equality case, while for the inequality case, a parallel splitting type algorithm is proposed. In both algorithms, the GNE seeking task is decomposed into a sequential Nash equilibrium (NE) computation of regularized subgames and distributed update of multipliers and auxiliary variables, based on local data and local communication. Our two double-layer GNE algorithms need not specify the inner loop NE seeking algorithm, and moreover, only require that the strongly monotone subgames are inexactly solved. We prove their convergence by showing that the two algorithms can be seen as specific instances of preconditioned proximal point algorithms for finding zeros of monotone operators. Applications and numerical simulations are given for illustration.
机译:在本文中,我们研究了具有仿射耦合约束的单调游戏的分布式广义纳什均衡(GNE)计算。每个参与者只能利用其本地目标函数,本地可行集和耦合约束的本地块,并且只能与其邻居通信。我们假设游戏具有单调伪亚微分,而没有Lipschitz连续性限制。我们分别针对相等性和不等式仿射耦合约束,设计了新颖的无中心分布式GNE搜寻算法。针对等式,提出了一种乘数的近端交替方向法,对于不等式,提出了一种并行分裂式算法。在这两种算法中,基于本地数据和本地通信,GNE搜索任务都分解为规则子游戏的顺序Nash平衡(NE)计算以及乘数和辅助变量的分布式更新。我们的两个双层GNE算法不需要指定内环网元搜索算法,而且只需要不完全解决强单调子游戏。我们通过证明这两种算法可以看作是用于查找单调算子零的预处理近点算法的特定实例来证明它们的收敛性。给出了应用程序和数值模拟以进行说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号