首页> 外文期刊>Concurrency and computation: practice and experience >Healthcare fraud detection using primitive sub peer group analysis
【24h】

Healthcare fraud detection using primitive sub peer group analysis

机译:使用原始子对等体组分析的医疗保健欺诈检测

获取原文
获取原文并翻译 | 示例

摘要

Healthcare fraud is a significant problem greatly affecting the quality of healthcare services. Manual auditing of insurance claims extends to the delay in finding fraudulent behaviors causing huge financial loss and also putting the patients' health conditions at risk. Since the past decade, the automation of fraud detection using machine learning techniques has become a prominent research topic. Several automated fraud detection systems using machine learning techniques have been proposed so far. However, developing a healthcare fraud detection system that is adaptive to the systematic changes is still missing. Therefore, in this article, we develop primitive sub peer group analysis (PSPGA) for identifying the suspicious behaviors in health insurance claims. PSPGA is inspired by peer group analysis, a popular unsupervised learning technique, which identifies suspicious behaviors based on local pattern analysis. PSPGA distinguishes between the concept drifts and the sudden drifts and flags the sudden drifts as fraudulent. Moreover, PSPGA makes the fraud detection system adaptive to the concept drifts by considering the updates for peer groups over time.
机译:医疗保健欺诈是一个重要的问题,极大地影响了医疗保健服务的质量。保险索赔的手动审计扩展到发现欺诈行为导致巨大的经济损失,并将患者健康状况造成风险。自过去十年以来,使用机器学习技术的欺诈检测自动化已成为一个突出的研究主题。到目前为止,已经提出了几种使用机器学习技术的自动欺诈检测系统。然而,制定对系统变化的保健欺诈检测系统仍然缺失。因此,在本文中,我们开发原始子对等体组分析(PSPGA),以确定健康保险索赔中的可疑行为。 PSPGA受到同行组分析的启发,这是一种流行无监督的学习技术,它识别基于本地模式分析的可疑行为。 PSPGA区分概念漂移和突然漂移和突然漂移的突然漂移和欺诈性。此外,PSPGA通过考虑随着时间的推移,通过考虑对等组的更新来使欺诈检测系统自适应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号