首页> 外文期刊>Expert Systems with Application >Stock fraud detection using peer group analysis
【24h】

Stock fraud detection using peer group analysis

机译:使用对等组分析检测股票欺诈

获取原文
获取原文并翻译 | 示例

摘要

This study proposes a method to detect suspicious patterns of stock price manipulation using an unsu-pervised data mining technique: peer group analysis. This technique detects abnormal behavior of a target by comparing it with its peer group and measuring the deviation of its behavior from that of its peers. Moreover, this study proposes a method to improve the general peer group analysis by incorporating the weight of peer group members into summarizing their behavior, along with the consideration of parameter updates over time. Using real time series data of Korean stock market, this study shows the advantage of the proposed peer group analysis in detecting abnormal stock price change. In addition, we perform sensitivity analysis to examine the effect of the parameters used in the proposed method.
机译:这项研究提出了一种使用未监督的数据挖掘技术来检测股票价格操纵的可疑模式的方法:对等组分析。此技术通过将目标与其对等组进行比较并测量其行为与对等方的偏差来检测目标的异常行为。此外,这项研究提出了一种方法,通过将对等组成员的权重汇总到他们的行为中,并考虑随着时间的推移进行参数更新,来改进一般对等组分析。利用韩国股票市场的实时序列数据,本研究表明了拟议的同伴群体分析在检测异常股价变化中的优势。此外,我们进行敏感性分析以检查所提出的方法中使用的参数的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号