首页> 外文期刊>Computers & operations research >Multiple task assignments for cooperating uninhabited aerial vehicles using genetic algorithms
【24h】

Multiple task assignments for cooperating uninhabited aerial vehicles using genetic algorithms

机译:使用遗传算法协作无人飞行器的多个任务分配

获取原文
获取原文并翻译 | 示例

摘要

A problem of assigning cooperating uninhabited aerial vehicles to perform multiple tasks on multiple targets is posed as a new combinatorial optimization problem. A genetic algorithm for solving such a problem is proposed. The algorithm allows us to efficiently solve this NP-hard problem that has prohibitive computational complexity for classical combinatorial optimization methods. It also allows us to take into account the unique requirements of the scenario such as task precedence and coordination, timing constraints, and trajectory limitations. A matrix representation of the genetic algorithm chromosomes simplifies the encoding process and the application of the genetic operators. The performance of the algorithm is compared to that of deterministic branch and bound search and stochastic random search methods. Monte Carlo simulations demonstrate the viability of the genetic algorithm by showing that it consistently and quickly provides good feasible solutions. This makes the real time implementation for high-dimensional problems feasible.
机译:分配合作的无人飞行器以在多个目标上执行多个任务的问题被提出作为新的组合优化问题。提出了一种解决该问题的遗传算法。该算法使我们能够有效地解决这个NP难题,对于经典组合优化方法而言,它具有令人难以置信的计算复杂性。它还使我们能够考虑方案的独特要求,例如任务优先级和协调,时间限制和轨迹限制。遗传算法染色体的矩阵表示简化了遗传运算符的编码过程和应用。将算法的性能与确定性分支定界搜索和随机随机搜索方法的性能进行比较。蒙特卡洛模拟通过证明遗传算法始终如一且迅速提供了良好可行的解决方案,证明了遗传算法的可行性。这使得针对高维问题的实时实现成为可能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号