首页> 外文期刊>Computers & operations research >Integrated task assignment and path optimization for cooperating uninhabited aerial vehicles using genetic algorithms
【24h】

Integrated task assignment and path optimization for cooperating uninhabited aerial vehicles using genetic algorithms

机译:使用遗传算法的无人飞行器协作的集成任务分配和路径优化

获取原文
获取原文并翻译 | 示例

摘要

The problem of integrating task assignment and planning paths for a group of cooperating uninhabited aerial vehicles, servicing multiple targets, is addressed. In the problem of interest the uninhabited aerial vehicles need to perform multiple consecutive tasks cooperatively on each ground target. A Dubins car model is used for motion planning, taking into account each vehicle's specific constraint of minimum turn radius. By using a finite set to define the visitation angle of a vehicle over a target we pose the integrated problem of task assignment and path optimization in the form of a graph. This new approach results in suboptimal trajectory assignments. Refining the visitation angle discretization allows for an improved solution. Due to the computational complexity of the resulting combinatorial optimization problem, we propose genetic algorithms for the stochastic search of the space of solutions. We distinguish between two cases of vehicle group composition: homogeneous, where all vehicles are identical; and heterogeneous, where the vehicles may have different operational capabilities and kinematic constraints. The performance of the genetic algorithms is demonstrated through sample runs and a Monte Carlo simulation study. Results show that the algorithms quickly provide good feasible solutions, and find the optimal solution for small sized problems.
机译:解决了为一组协作的无人飞行器,为多个目标提供服务的任务分配和计划路径整合的问题。在感兴趣的问题中,无人飞行器需要在每个地面目标上协同执行多个连续任务。考虑到每个车辆对最小转弯半径的特定约束,将杜宾斯汽车模型用于运动计划。通过使用有限集定义车辆在目标上的访问角度,我们以图形的形式提出了任务分配和路径优化的综合问题。这种新方法导致轨迹分配不理想。细化访问角离散化可以改进解决方案。由于所产生的组合优化问题的计算复杂性,我们提出了一种遗传算法,用于随机搜索解的空间。我们区分车辆组构成的两种情况:同类,即所有车辆都相同;和异构的,其中车辆可能具有不同的操作能力和运动学约束。通过样本运行和蒙特卡洛模拟研究证明了遗传算法的性能。结果表明,该算法快速提供了良好可行的解决方案,并为小型问题找到了最佳解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号