首页> 外文期刊>Computers & mathematics with applications >Minimum-norm Hamiltonian solutions of a class of generalized Sylvester-conjugate matrix equations
【24h】

Minimum-norm Hamiltonian solutions of a class of generalized Sylvester-conjugate matrix equations

机译:一类广义Sylvester共轭矩阵方程的最小范哈密顿解

获取原文
获取原文并翻译 | 示例

摘要

In this study, we consider the iteration solutions of the generalized Sylvester-conjugate matrix equation: AXB + C (X) over barD = E by a modified conjugate gradient method. When the system is consistent, the convergence theorem shows that a solution can be obtained within finite iterative steps in the absence of round-off error for any initial value given Hamiltonian matrix. Furthermore, we can get the minimum-norm solution X* by choosing a special kind of initial matrix. Finally, some numerical examples are given to demonstrate the algorithm considered is quite effective in actual computation. (C) 2017 Elsevier Ltd. All rights reserved.
机译:在这项研究中,我们考虑使用改进的共轭梯度法,在barD = E上考虑广义Sylvester共轭矩阵方程:AXB + C(X)的迭代解。当系统一致时,收敛定理表明,在给定哈密顿矩阵的任何初始值都没有舍入误差的情况下,可以在有限的迭代步骤内获得解。此外,我们可以通过选择一种特殊的初始矩阵来获得最小范数解X *。最后,给出了一些数值例子来说明所考虑的算法在实际计算中非常有效。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号